Dear Friends:

I have now added a zitterbewegung analysis of the time operator. The first section is the same as in my most recent post.

1. The Differential Time Operator

Let's start with the Dirac Hamiltonian:
$\hat{H}_{0}=\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}=\gamma^{0} m-\alpha^{k} p_{k}=\beta m+\boldsymbol{\alpha} \cdot \mathbf{p}$
where the final sign reversal arises from a Minkowski tensor $\operatorname{diag}\left(\eta_{\mu \nu}\right)=(+1,-1,-1,-1)$. The "hat" designates this as a 4×4 Dirac operator, and the 0 subscript designates the Hamiltonian as being related to the "time" component of Dirac's equation written as $p_{0} \psi=\left(\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}\right) \psi$.

Using the Heisenberg canonical commutation relation $\left\lfloor x_{i}, p_{j}\right\rfloor=-i \eta_{i j}$, one can show from (1.1) in the usual manner that:
$\frac{d \hat{x}_{k}}{d t}=i\left[\hat{H}_{0}, x_{k}\right]=\gamma^{0} \gamma_{k}=\alpha_{k}$
Because the eigenvalues $\lambda\left(\alpha_{k}\right)= \pm 1(= \pm c)$, this suggests that the instantaneous velocity of a fermion is equal to the speed of light, and zitterbewegung motion and Foldy-Wouthuysen transformations are generally employed to make sense of this result and obtain a velocity spectrum $-c \leq v \leq c$. This is all standard physics.

We may rewrite (1.2) above as the differential position operator:
$d \hat{x}^{k}=\alpha^{k} d x^{0}=\gamma^{0} \gamma^{k} d x^{0}$
Now, let's define a differential time operator $d \hat{x}^{0}$ according to:
$d \tau^{2} \equiv d \hat{x}^{\sigma} d \hat{x}_{\sigma}=d \hat{x}^{0} d \hat{x}_{0}+d \hat{x}^{k} d \hat{x}_{k}=d \hat{x}_{0}{ }^{2}-d \hat{x}^{1^{2}}-d \hat{x}^{2^{2}}-d \hat{x}^{3^{2}}$
That is, by definition, we require that $d \hat{x}^{\sigma}=\left(d \hat{x}^{0}, d \hat{x}^{1}, d \hat{x}^{2}, d \hat{x}^{3}\right)$ form a Lorentz quadruplet of operators in combination with the $d \hat{x}^{k}$.

The $d \hat{x}^{0}$ which satisfies (1.4) is specified by:
$d \hat{x}_{0} \equiv 2 \gamma^{0} d \tau-\sqrt{3} \gamma^{0} \gamma^{k} d x_{k}=2 \gamma^{0} d \tau-\sqrt{3} \alpha^{k} d x_{k}$
Note that this mirrors \hat{H}_{0} in (1.1), but with additional constant factors. To see this, we may calculate out the following, with all steps shown:

$$
\begin{align*}
& d \hat{x}_{0}{ }^{2}-d \hat{x}^{1^{2}}-d \hat{x}^{2^{2}}-d \hat{x}^{3^{2}} \\
& =\left(2 \gamma^{0} d \tau-\sqrt{3} \gamma^{0} \gamma^{k} d x_{k}\right)^{2}-\left(\gamma^{0} \gamma^{1} d x^{0}\right)^{2}-\left(\gamma^{0} \gamma^{2} d x^{0}\right)^{2}-\left(\gamma^{0} \gamma^{3} d x^{0}\right)^{2} \\
& =\left(2 \gamma^{0} d \tau-\sqrt{3} \gamma^{0} \gamma^{k} d x_{k}\right)\left(2 \gamma^{0} d \tau-\sqrt{3} \gamma^{0} \gamma^{l} d x_{l}\right) \\
& -\left(\gamma^{0} \gamma^{1} d x^{0}\right)\left(\gamma^{0} \gamma^{1} d x^{0}\right)-\left(\gamma^{0} \gamma^{2} d x^{0}\right)\left(\gamma^{0} \gamma^{2} d x^{0}\right)-\left(\gamma^{0} \gamma^{3} d x^{0}\right)\left(\gamma^{0} \gamma^{3} d x^{0}\right) \\
& =4 \gamma^{0} \gamma^{0} d \tau^{2}+3 \gamma^{0} \gamma^{k} \gamma^{0} \gamma^{l} d x_{k} d x_{l}-2 \sqrt{3} \gamma^{0} \gamma^{k} \gamma^{0} d x_{k} d \tau-2 \sqrt{3} \gamma^{0} \gamma^{0} \gamma^{l} d x_{l} d \tau \tag{1.6}\\
& -\gamma^{0} \gamma^{1} \gamma^{0} \gamma^{1} d x^{0} d x^{0}-\gamma^{0} \gamma^{2} \gamma^{0} \gamma^{2} d x^{0} d x^{0}-\gamma^{0} \gamma^{3} \gamma^{0} \gamma^{3} d x^{0} d x^{0} \\
& =4 d \tau^{2}-3 \gamma^{k} \gamma^{l} d x_{k} d x_{l}-3 d x^{0} d x^{0} \\
& =4 d \tau^{2}-3 d x^{k} d x_{k}-3 d x^{0} d x_{0} \\
& =4 d \tau^{2}-3 d \tau^{2} \\
& =d \tau^{2}
\end{align*}
$$

where in the reduction, we have employed:

$$
\begin{aligned}
& \gamma^{k} \gamma^{l} d x_{k} d x_{l}=\left(-2 i \sigma^{k l}+\gamma^{l} \gamma^{k}\right) d x_{k} d x_{l}=\gamma^{l} \gamma^{k} d x_{k} d x_{l} \\
& =\frac{1}{2}\left\{\gamma^{k} \gamma^{l}+\gamma^{l} \gamma^{k}\right\} d x_{k} d x_{l}=\eta^{k l} d x_{k} d x_{l}=d x^{k} d x_{k}
\end{aligned}
$$

which in turn employs:

$$
\begin{equation*}
\sigma^{k l}=\frac{1}{2} i\left[\gamma^{k} \gamma^{l}-\gamma^{l} \gamma^{k}\right] \tag{1.8}
\end{equation*}
$$

and, because $\sigma^{k l}=-\sigma^{l k}$:

$$
\begin{equation*}
\sigma^{k l} d x_{k} d x_{l}=0 \tag{1.9}
\end{equation*}
$$

2. The Zitterbewegung of the Differential Time Operator

Now let's take the time operator (1.5) and divide through by $d t=d x_{0}$, as:
$\dot{\hat{x}}_{0} \equiv \frac{d \hat{x}_{0}}{d t}=2 \gamma^{0} \frac{d \tau}{d t}-\sqrt{3} \gamma^{0} \gamma^{k} \frac{d x_{k}}{d t}$
We are now going to consider the behavior of the time operator over time. Specifically, let us now calculate:

$$
\begin{equation*}
\frac{d^{2} \hat{x}_{0}}{d t^{2}}=\frac{d \dot{\hat{x}}_{0}}{d t}=i\left[\hat{H}_{0}, \dot{\hat{x}}_{0}\right] \tag{2.2}
\end{equation*}
$$

The calculation takes place in several steps, using $\hat{H}_{0}=\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}$ from (1). First, we use (2.1) and (2.2) to set up the calculation:

$$
\begin{align*}
& -i \frac{d^{2} \hat{x}_{0}}{d t^{2}}=-i \frac{d \dot{\hat{x}}_{0}}{d t}=\left[\hat{H}_{0}, \dot{\hat{x}}_{0}\right]=\hat{H}_{0} \dot{\hat{x}}_{0}-\dot{\hat{x}}_{0} \hat{H}_{0} \\
& =\left(\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}\right)\left(2 \gamma^{0} \frac{d \tau}{d t}-\sqrt{3} \gamma^{0} \gamma^{l} \frac{d x_{l}}{d t}\right)-\left(2 \gamma^{0} \frac{d \tau}{d t}-\sqrt{3} \gamma^{0} \gamma^{k} \frac{d x_{k}}{d t}\right)\left(\gamma^{0} m-\gamma^{0} \gamma^{l} p_{l}\right) \tag{2.3}
\end{align*}
$$

This expands and then partially reduces to:

$$
\begin{align*}
-i \frac{d^{2} \hat{x}_{0}}{d t^{2}} & =2 m \gamma^{0} \gamma^{0} \frac{d \tau}{d t}+\sqrt{3} \gamma^{0} \gamma^{k} \gamma^{0} \gamma^{l} p_{k} \frac{d x_{l}}{d t}-2 \gamma^{0} \gamma^{k} \gamma^{0} \frac{d \tau}{d t} p_{k}-\sqrt{3} m \gamma^{0} \gamma^{0} \gamma^{l} \frac{d x_{l}}{d t} \\
& -2 m \gamma^{0} \gamma^{0} \frac{d \tau}{d t}-\sqrt{3} \gamma^{0} \gamma^{k} \gamma^{0} \gamma^{l} p_{l} \frac{d x_{k}}{d t}+2 \gamma^{0} \gamma^{0} \gamma^{l} \frac{d \tau}{d t} p_{l}+\sqrt{3} m \gamma^{0} \gamma^{k} \gamma^{0} \frac{d x_{k}}{d t} \tag{2.4}\\
& =\sqrt{3}\left[\gamma^{l} \gamma^{k}-\gamma^{k} \gamma^{l}\right] p_{k} \frac{d x_{l}}{d t}+4 \gamma^{k} \frac{d \tau}{d t} p_{k}-2 \sqrt{3} m \gamma^{k} \frac{d x_{k}}{d t} \\
& =\left[i 2 \sqrt{3} \sigma^{k l} p_{k}+(4-2 \sqrt{3}) \gamma^{l} m\right] \frac{d x_{l}}{d t}
\end{align*}
$$

using $\sigma^{k l}=\frac{1}{2} i\left[\gamma^{k} \gamma^{l}-\gamma^{l} \gamma^{k}\right]$ and $p^{\mu}=m d x^{\mu} / d \tau$.
Next, we substitute (1.1) written in terms of the mass as $m=\gamma^{0} \hat{H}_{0}+\gamma^{k} p_{k}$, and multiply through by $\frac{1}{2}$. This further reduces to:

$$
\begin{align*}
-\frac{1}{2} i \frac{d^{2} \hat{x}_{0}}{d t^{2}} & =\left[i \sqrt{3} \sigma^{k l} p_{k}+(2-\sqrt{3}) \gamma^{l} m\right] \frac{d x_{l}}{d t} \\
& =\left[i \sqrt{3} \sigma^{k l} p_{k}+(2-\sqrt{3}) \gamma^{l}\left(\gamma^{0} \hat{H}_{0}+\gamma^{k} p_{k}\right)\right] \frac{d x_{l}}{d t} \\
& =\left[i \sqrt{3} \sigma^{k l} p_{k}-\sqrt{3} \gamma^{l} \gamma^{k} p_{k}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0}+2\left(\gamma^{l} \gamma^{0} \hat{H}_{0}+\gamma^{l} \gamma^{k} p_{k}\right)\right] \frac{d x_{l}}{d t} \tag{2.5}\\
& =\left[-\sqrt{3} \frac{1}{2}\left[\gamma^{k} \gamma^{l}+\gamma^{l} \gamma^{k}\right] p_{k}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0}+2\left(\gamma^{l} \gamma^{0} \hat{H}_{0}+\gamma^{l} \gamma^{k} p_{k}\right)\right] \frac{d x_{l}}{d t} \\
& =\left[-\sqrt{3} \eta^{k l} p_{k}+2 \gamma^{l} \gamma^{k} p_{k}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0}+2 \gamma^{l} \gamma^{0} \hat{H}_{0}\right] \frac{d x_{l}}{d t}
\end{align*}
$$

using $\sigma^{k l}=\frac{1}{2} i\left[\gamma^{k} \gamma^{l}-\gamma^{l} \gamma^{k}\right]$ and $\eta^{k l}=\frac{1}{2}\left[\gamma^{k} \gamma^{l}+\gamma^{l} \gamma^{k}\right]$.
Now, we distribute the $d x_{l} / d t$ and use $p^{\mu}=m d x^{\mu} / d \tau$ and (1.7) to write:

$$
\begin{align*}
-\frac{1}{2} i \frac{d^{2} \hat{x}_{0}}{d t^{2}} & =\left[-\sqrt{3} \eta^{k l} p_{k}+2 \gamma^{l} \gamma^{k} p_{k}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0}+2 \gamma^{l} \gamma^{0} \hat{H}_{0}\right] \frac{d x_{l}}{d t} \\
& =\left[-\sqrt{3} \eta^{k l} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}+2 \gamma^{l} \gamma^{k} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}+2 \gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}\right] \\
& =\left[-\sqrt{3} \eta^{k l} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}+2 \eta^{k l} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}-\sqrt{3} \gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}+2 \gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}\right], \tag{2.6}\\
& =(2-\sqrt{3})\left[+\eta^{k l} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}+\gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}\right] \\
& =(2-\sqrt{3})\left[p^{l}-\alpha^{l} \hat{H}_{0}\right] \frac{d x_{l}}{d t}
\end{align*}
$$

There are now two forms in which we shall wish to write the above. First, we make note of the fact that the known Zitterbewegung acceleration operator is specified by:
$\hat{z}^{l} \equiv \frac{d \alpha^{l}}{d t}=\frac{d \hat{v}^{l}}{d t}=\frac{d^{2} \hat{x}^{l}}{d t^{2}}=i\left[\hat{H}_{0}, \alpha^{l}\right]=2 i\left[p^{l}-\alpha^{l} \hat{H}_{0}\right]$
where $\hat{v}^{l}=\alpha^{l}$ is the velocity operator. Therefore, from the last line of the (2.6), we may write:
$\frac{d^{2} \hat{x}_{0}}{d t^{2}}=\frac{d \dot{\hat{x}}_{0}}{d t}=2 i(2-\sqrt{3})\left[p^{l}-\alpha^{l} \hat{H}_{0}\right] \frac{d x_{l}}{d t}=(2-\sqrt{3}) \hat{z}^{l} \frac{d x_{l}}{d t}$,
which establishes a direct relationship between $d \dot{\hat{x}}_{0} / d t$ and the Zitterbewegung acceleration.
Second, from the next-to-last line of (2.6), we may also reduce using $v_{l}=d x_{l} / d t$, to:

$$
\begin{align*}
-\frac{1}{2} i \frac{d^{2} \hat{x}_{0}}{d t^{2}} & =(2-\sqrt{3})\left[+\eta^{k l} m \frac{d x_{k}}{d \tau} \frac{d x_{l}}{d t}+\gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}\right] \\
& =(2-\sqrt{3})\left[+m \frac{d t}{d \tau} \frac{d x^{l}}{d t} \frac{d x_{l}}{d t}+\gamma^{l} \gamma^{0} \hat{H}_{0} \frac{d x_{l}}{d t}\right] \tag{2.9}\\
& =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}+\alpha^{l} v_{l} \hat{H}_{0}\right]
\end{align*}
$$

This admits to a further reduction if we employ $\hat{H}_{0}=\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}$. Then, this becomes:

$$
\begin{align*}
-\frac{1}{2} i \frac{d^{2} \hat{x}_{0}}{d t^{2}} & =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}+\alpha^{l} v_{l}\left(\gamma^{0} m-\gamma^{0} \gamma^{k} p_{k}\right)\right] \\
& =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}-\gamma^{0} \gamma^{l} \gamma^{0} \gamma^{k} v_{l} p_{k}+\gamma^{0} \gamma^{l} \gamma^{0} m v_{l}\right] \\
& =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}+m \gamma^{l} \gamma^{k} \frac{v_{l} v_{k}}{\sqrt{1-v^{2}}}-m \gamma^{l} v_{l}\right] \tag{2.10}\\
& =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}+m \frac{\eta^{l k} v_{l} v_{k}}{\sqrt{1-v^{2}}}-m \gamma^{l} v_{l}\right] \\
& =-(2-\sqrt{3})\left[\frac{m v^{2}}{\sqrt{1-v^{2}}}-\frac{m v^{2}}{\sqrt{1-v^{2}}}-m \gamma^{l} v_{l}\right] \\
& =(2-\sqrt{3}) m \gamma^{l} v_{l}
\end{align*}
$$

where in the fourth line we again make use of (1.7). The upshot of (2.10), is that:
$\frac{1}{2} \frac{d^{2} \hat{x}_{0}}{d t^{2}}=\frac{1}{2} \frac{d \dot{\hat{x}}_{0}}{d t}=i(2-\sqrt{3}) m \gamma^{l} v_{l}=i(2-\sqrt{3}) m \gamma^{l} \frac{d x_{l}}{d t}=-i(2-\sqrt{3}) m \boldsymbol{v} \cdot \mathbf{v}=-i(2-\sqrt{3}) m \boldsymbol{\gamma} \cdot \frac{\mathbf{d x}}{d t}$.
This is a very direct relationship between $d \dot{\hat{x}}_{0} / d t$ and the scalar velocity v_{l}. But what is of even more interest, is that (2.11) is easily integrated, twice, to obtain the time operator \hat{x}_{0}.

First, we write the above as:
$\frac{d}{d t} \frac{d \hat{x}_{0}}{d t}=2 i(2-\sqrt{3}) m \gamma^{l} \frac{d x_{l}}{d t}$.
Then, we multiply through by $d t$ and apply an indefinite integral to each side to write:

$$
\begin{equation*}
\int d \frac{d \hat{x}_{0}}{d t}=\frac{d \hat{x}_{0}}{d t}=\dot{\hat{x}}_{0}=2 i(2-\sqrt{3}) m \gamma^{l} \int d x_{l}=2 i(2-\sqrt{3}) m \gamma^{l} x_{l}+\dot{\hat{x}}_{0}(0) . \tag{2.13}
\end{equation*}
$$

where $\dot{\hat{x}}_{0}(0)$ is a constant of integration matrix. We rely on the fact that $m \gamma^{l}$ is a constant. Note that $\dot{\hat{x}}_{0}$ is a function only of space position, not of time. Then, we again multiply through by $d t$ and apply an indefinite integral to each side to write:

$$
\begin{equation*}
\int d \hat{x}_{0}=\hat{x}_{0}=\int\left[2 i(2-\sqrt{3}) m \gamma^{l} x_{l}+\dot{\hat{x}}_{0}(0) \mid d t=\left[2 i(2-\sqrt{3}) m \gamma^{l} x_{l}+\dot{\hat{x}}_{0}(0)\right] t+\hat{x}_{0}(0) .\right. \tag{2.14}
\end{equation*}
$$

Here, we use the fact that $2 i(2-\sqrt{3}) m \gamma^{l} x_{l}+\dot{\hat{x}}_{0}(0)$ is independent of time, and now, the result is a linear function of time. Thus, the final version of the time operator is:
$\hat{t}=\hat{t}(0)+\dot{\hat{t}}(0) \cdot t+2 i(2-\sqrt{3}) m \gamma^{l} x_{l} \cdot t$.

Finally, we may combine the alternative expressions (2.8) and (2.11) to write:

$$
\begin{equation*}
\frac{d^{2} \hat{x}_{0}}{d t^{2}}=(2-\sqrt{3}) \hat{z}^{\prime} \frac{d x_{l}}{d t}=2 i(2-\sqrt{3}) m \gamma^{l} \frac{d x_{l}}{d t} \tag{2.16}
\end{equation*}
$$

Factoring out common terms then yields the very simple expression:

$$
\begin{equation*}
\frac{1}{2} \hat{z}^{l}=\frac{1}{2} \frac{d^{2} \hat{x}^{l}}{d t^{2}}=i m \gamma^{l} \tag{2.17}
\end{equation*}
$$

The Zitterbewegung acceleration is now seen to be directly proportional to the mass of the fermion. Moreover, this expression is easily integrated to obtain the position operator as a function of time. First, we write:

$$
\begin{equation*}
\int d \frac{d \hat{x}^{l}}{d t}=\frac{d \hat{x}^{l}}{d t}=2 i m \gamma^{l} \int d t=2 i m \gamma^{l} t+\dot{\hat{x}}^{l}(0) \tag{2.18}
\end{equation*}
$$

Then, we integrate up one last time to obtain:

$$
\begin{equation*}
\int d \hat{x}^{l}=\hat{x}^{l}=\int\left(2 i m \gamma^{l} t+\dot{\hat{x}}^{l}(0)\right) d t=i m \gamma^{l} t^{2}+\dot{\hat{x}}^{l}(0) \cdot t+\hat{x}^{l}(0) \tag{2.19}
\end{equation*}
$$

In sum:

$$
\begin{equation*}
\hat{x}^{l}=i \gamma^{l} m t^{2}+\dot{\hat{x}}^{l}(0) \cdot t+\hat{x}^{l}(0) \tag{2.20}
\end{equation*}
$$

Reduced in this way, the Zitterbewegung is actually a constant (operator) acceleration proportional to the fermion mass. So, if we select $\dot{\hat{x}}^{l}(0)=0$ and $\hat{x}^{l}(0)=0$ to start, the space position operator $\hat{x}^{l}=i \gamma^{l} m t^{2}$ varies with $m t^{2}$, times the related Dirac $i \gamma^{l}$.

That's all for now.
Jay R. Yablon
July 28, 2008

