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Dear Friends: 

 I have now added a zitterbewegung analysis of the time operator.  The first section is the 

same as in my most recent post. 

1.  The Differential Time Operator 

Let’s start with the Dirac Hamiltonian: 

pα ⋅+=−=−= mpmpmH k

k

k

k βαγγγγ 000

0
ˆ    (1.1) 

where the final sign reversal arises from a Minkowski tensor ( ) ( )1,1,1,1diag −−−+=µνη .  The 

“hat” designates this as a 4x4 Dirac operator, and the 0 subscript designates the Hamiltonian as 

being related to the “time” component of Dirac’s equation written as ( )ψγγγψ k

k
pmp

00

0 −=  . 

Using the Heisenberg canonical commutation relation [ ] ijji ipx η−=, , one can show from 

(1.1) in the usual manner that: 

[ ] kkk

k xHi
dt

xd
αγγ === 0

0 ,ˆˆ
   (1.2) 

Because the eigenvalues ( ) ( )ck ±=±= 1αλ , this suggests that the instantaneous velocity of a 

fermion is equal to the speed of light, and zitterbewegung motion and Foldy-Wouthuysen 

transformations are generally employed to make sense of this result and obtain a velocity 

spectrum cvc ≤≤− .  This is all standard physics. 

 We may rewrite (1.2) above as the differential position operator: 

000ˆ dxdxxd kkk γγα ==    (1.3) 

 Now, let’s define a differential time operator 0
x̂d  according to: 

2322212

00

02 ˆˆˆˆˆˆˆˆˆˆ xdxdxdxdxdxdxdxdxdxdd k

k −−−=+=≡ σ
στ    (1.4) 

That is, by definition, we require that ( )3210 ˆ,ˆ,ˆ,ˆˆ xdxdxdxdxd =σ  form a Lorentz quadruplet of 

operators in combination with the k
xd ˆ . 

 The 0
x̂d  which satisfies (1.4) is specified by: 

k

k

k

k dxddxdxd ατγγγτγ 3232ˆ 000

0 −=−≡     (1.5) 

Note that this mirrors 0Ĥ  in (1.1), but with additional constant factors.  To see this, we may 

calculate out the following, with all steps shown: 
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where in the reduction, we have employed: 

( )
{ } k

k

lk

kl
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kllk
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klkl
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dxdxdxdxdxdx

dxdxdxdxidxdx

==+=

=+−=

ηγγγγ

γγγγσγγ

2
1

2
   (1.7) 

which in turn employs: 

[ ]kllkkl
i γγγγσ −=

2
1    (1.8) 

and, because lkkl σσ −= : 

0=lk

kl
dxdxσ    (1.9) 

 

2.  The Zitterbewegung of the Differential Time Operator 

 Now let’s take the time operator (1.5) and divide through by 0dxdt = , as: 

dt

dx

dt

d

dt

xd
x kkγγ

τ
γ 000

0 32
ˆ

ˆ −=≡&     (2.1) 

We are now going to consider the behavior of the time operator over time.  Specifically, let us 

now calculate: 

[ ]00
0

2

0

2

ˆ,ˆˆˆ
xHi

dt

xd

dt

xd &
&

==     (2.2) 

 The calculation takes place in several steps, using k

k
pmH γγγ 00

0
ˆ −=  from (1).  First, 

we use (2.1) and (2.2) to set up the calculation: 
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    (2.3) 

This expands and then partially reduces to: 
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  ,  (2.4) 

using [ ]kllkkl
i γγγγσ −=

2
1  and τµµ dmdxp /= . 

 Next, we substitute (1.1) written in terms of the mass as k

k
pHm γγ += 0

0 ˆ , and multiply 

through by 
2
1 .  This further reduces to: 

( )[ ]
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  ,  (2.5) 

using [ ]kllkkl
i γγγγσ −=

2
1  and [ ]kllkkl γγγγη +=

2
1 . 

 Now, we distribute the dtdxl /  and use τµµ dmdxp /=  and (1.7) to write: 
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  ,  (2.6) 

 There are now two forms in which we shall wish to write the above.  First, we make note 

of the fact that the known Zitterbewegung acceleration operator is specified by: 

[ ] [ ]002

2

ˆ2,ˆˆˆ
ˆ HpiHi

dt

xd

dt

vd

dt

d
z

lll
lll

l αα
α

−====≡     (2.7) 

where ll
v α=ˆ  is the velocity operator.  Therefore, from the last line of the (2.6), we may write: 

( )[ ] ( )
dt

dx
z

dt

dx
Hpi

dt

xd

dt

xd lllll ˆ32ˆ322
ˆˆ

0

0

2

0

2

−=−−== α
&

  ,  (2.8) 

which establishes a direct relationship between dtxd /ˆ
0
&  and the Zitterbewegung acceleration. 

 Second, from the next-to-last line of (2.6), we may also reduce using dtdxv ll /= , to: 

( )

( )
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  .  (2.9) 

This admits to a further reduction if we employ k

k
pmH γγγ 00

0
ˆ −= .  Then, this becomes: 
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where in the fourth line we again make use of (1.7).  The upshot of (2.10), is that: 

( ) ( ) ( ) ( )
dt

mimi
dt

dx
mivmi

dt

xd

dt

xd ll

l

l dx
γvγ ⋅−−=⋅−−=−=−== 32323232

ˆ

2

1ˆ

2

1 0

2

0

2

γγ
&

 . (2.11) 

This is a very direct relationship between dtxd /ˆ
0
&  and the scalar velocity lv .  But what is of even 

more interest, is that (2.11) is easily integrated, twice, to obtain the time operator 0x̂ . 

 First, we write the above as: 

( )
dt

dx
mi

dt

xd

dt

d llγ322
ˆ

0 −=  .   (2.12) 

Then, we multiply through by dt  and apply an indefinite integral to each side to write: 

( ) ( ) ( )0ˆ322322ˆ
ˆˆ

00

00 xxmidxmix
dt

xd

dt

xd
d l

l

l

l && +−=−=== ∫∫ γγ   .  (2.13) 

where ( )0ˆ
0x&  is a constant of integration matrix.  We rely on the fact that lmγ  is a constant.  Note 

that 0x̂&  is a function only of space position, not of time.  Then, we again multiply through by dt  

and apply an indefinite integral to each side to write:  

( ) ( )[ ] ( ) ( )[ ] ( )0ˆ0ˆ3220ˆ322ˆˆ
00000 xtxxmidtxxmixxd l

l

l

l ++−=+−== ∫∫ && γγ   .  (2.14) 

Here, we use the fact that ( ) ( )0ˆ322 0xxmi l

l &+− γ  is independent of time, and now, the result is a 

linear function of time.  Thus, the final version of the time operator is: 

( ) ( ) ( ) txmitttt l

l ⋅−+⋅+= γ3220ˆ0ˆˆ &
  .  (2.15) 
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 Finally, we may combine the alternative expressions (2.8) and (2.11) to write: 

( ) ( )
dt

dx
mi

dt

dx
z

dt

xd llll γ322ˆ32
ˆ
2

0

2

−=−=     (2.16) 

Factoring out common terms then yields the very simple expression: 

l
l

l
mi

dt

xd
z γ==

2

2 ˆ

2

1
ˆ

2

1
    (2.17) 

The Zitterbewegung acceleration is now seen to be directly proportional to the mass of the 

fermion.  Moreover, this expression is easily integrated to obtain the position operator as a 

function of time.  First, we write: 

( )0ˆ22
ˆˆ lll

ll

xtmidtmi
dt

xd

dt

xd
d &+=== ∫∫ γγ     (2.18) 

Then, we integrate up one last time to obtain: 

( )( ) ( ) ( )0ˆ0ˆ0ˆ2ˆˆ 2 lllllll xtxtmidtxtmixxd +⋅+=+== ∫∫ && γγ     (2.19) 

In sum: 

( ) ( )0ˆ0ˆˆ 2 llll xtxmtix +⋅+= &γ     (2.20) 

Reduced in this way, the Zitterbewegung is actually a constant (operator) acceleration 

proportional to the fermion mass.  So, if we select ( ) 00ˆ =lx&  and ( ) 00ˆ =lx  to start, the space 

position operator 2ˆ mtix ll γ=  varies with 2
mt , times the related Dirac liγ . 

 That’s all for now. 

Jay R. Yablon 

July 28, 2008 


