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Why Pythagoras Unknowingly Anticipated Quantum Physics 
Jay R. Yablon  

 
Two and a half millennia ago, Pythagoras established that the length l between any two 

points A and B, if one lays out this separation along x, y, z coordinates, is given by 
2 2 2 2l x y z= + + .    

 
Suppose that at any time between 500 BC and 1901 when the quantum revolution began, 

someone had said “let’s take the non-trivial square root of 2 2 2 2l x y z= + + ,” that is, let’s do 

something more interesting than merely writing 2 2 2l x y z= ± + + .   If one had known the Pauli 

matrices kσ , one could have used these to form i iX xσ/ ≡  with ( ), ,ix x y z= .  Then, in the 

manner that Dirac’s Minkowskian relation ( ) { }1 1
2 2 ,µν µ ν ν µ µ νη γ γ γ γ γ γ= + =  which may be used 

in the special relativistic energy relationship 2m p pµν
µ νη=  , one could have used  

( ) { }1 1
2 2 ,ij i j j i i jδ σ σ σ σ σ σ= + =  to write ( )2 21

2
ij i j i j j i i jl x x x x Xδ σ σ σ σ= = + = / , and more 

explicitly: 
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− −   + +  
= =     + − + − + +     

. (1) 

 
Then, similarly to Dirac’s m p pσ

σγ= = /  absent the spinors u which really require this to be an 

eigenvector relationship mu pu= / , one would have found that the square root equation is simply 
l X= / .  But when written out explicitly, this would be: 
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X
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−   
= = /   + −   

, (2) 

 
which, like m p pσ

σγ= = / , is a mathematically-invalid equation.   So we would be forced by 

Pythagoras, no less, to introduce a spinor which we shall call p, and to write (2) as the eigenvalue 
equation( ) 0X l p/ − = , which in explicit form, is: 

 

0A

B

pz l x iy

px iy z l

− −   
=  + − −  

. (3) 

 
So ( ) 0X l p/ − =  above now tells us that the length l represents eigenvalues of X/ , with 

associated eigenstates Ap , Bp .  So what are these eigenvalues?  As with any eigenvalue 

equation, we determine these using 
 

( ) ( )( ) 2 2 2 2 2 20 det X l l z l z x y l x y z= / − = − + − − = − − − . (4) 
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This now recovers the original Pythagorean relationship 2 2 2 2l x y z= + + , and this means that the 

eigenvalues of X/ are 2 2 2l x y z= ± + + .   

 
But now we have eigenstates also.  How do we interpret these?  In the only sensible way 

possible:  The length l represents the magnitude of the distance between two points A and B.  But 
there is also a question of direction, and that is why physics uses vectors.  If we start at point A 
and go to point B, which we denote as A B→  with “ → ” being a vector, then eigenstate Ap  

represents the circumstance where we start at A and go to B, i.e., in which the vector direction 

points from A to B, and its eigenvalue is 2 2 2l x y z= + + + .  Conversely, Bp  represents B A→ , 

starting at B and going to A, and its eigenvalue is 2 2 2l x y z= − + + .  This is a two-valuedness, 

but contradicting Pauli, it is perfectly classical.  It simply says that in going from point A to point 
B a person will traverse the same distance as when going from point B to point A, but will go in 
the opposite direction.  The reason we use vectors, and not merely lines, in physics, is because 
direction, and not only magnitude, is important. 

 
But, we are able to use the core language of quantum physics to discuss all of this.  

Specifically, we may write all of this in bras and kets by saying that X p l p/ = .  More 

specifically, if we denote  AA B p+ ≡ → ≡  as the state with a forward vector from A to B 

and BB A p− ≡ → ≡  as the state with a “return trip” vector from B to A, then the “trip away” 

from A is denoted by 2 2 2X x y z/ + = + + + +  and the trip back home to A is denoted as 

2 2 2X x y z/ − = − + + − .  This is the Pythagorean theorem represented using quantum 

mechanical expressions identical in form to those used for things such as Stern-Gerlach (see, e.g. 
[1] sections 1.1 and 1.2).  Yet there is nothing spooky or weird or in any way perplexing or 
disconcerting about the notion that a Pythagorean length has a two-fold degeneracy associated 
simply with whether one is “coming” or “going” over the distance described by 2 2 2 2l x y z= + + .  
Physics is always not only about magnitude, but also about direction.   

 
This analysis tells us something very profound about the nature of three-dimensional 

space as well as about four-dimensional spacetime. It tells us that a great deal of what we think 
of as “quantum mechanics” is actually hidden in the very nature and structure of a Pythagorean 
space.  But this is not clearly seen until one takes the non-trivial square root of a Pythagorean 
relationship and naturally comes across matrix operators and eigenkets and eigenvalues with 
twofold or fourfold degeneracy.   

 
In fact, let’s carefully parse this out, from the geometric beginning:  Start with a one-

dimensional “straight” (Euclidean) line and let’s label the axis for this line as “z.”  Along this 
line one may define a length l bounded by points A and B.  But physics also calls for vectors, and 
in this one-dimensional space, there are two vectors, one with A B→  direction, the other with 
B A→  direction.  So the length l, from the start, should really be thought of as the two-valued 
l±  in view of the vectorial aspects of physics. 
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Now let’s propose to introduce the concept of rotation.  All we have available for rotation 

is the z axis.  But in order to do a rotation, we must introduce, not one, but two more axes, which 
we label x and y, and which now carve out and define an x-y plane.  We now have a three 
dimensional space, with no concept of time yet introduced.   What is the most economical way to 
talk about these rotations?  In 1843, William Rowan Hamilton carved the quaternion 
relationships 2 2 2 1i j k ijk= = = = −  into the Brougham Bridge in Dublin Ireland.  These 
quaternions i, j, k are the first known examples of non-commuting numbers, and their non-
commuting nature was dictated not by any abstract mathematics, but by Hamilton’s recognizing 
that in a three-dimensional space, rotation is not commutative.  This later found expression in the 

Pauli matrices kσ  which 12 2 2 32 1 2 3i Iσ σ σ σ σ σ= = = − =  which are the modern expression of 
Hamilton’s quaternions.  The non-commutation of rotations is then expressed very explicitly via 
the relationship 12 ,i j ijk kiσ σ ε σ  =  , which itself becomes the model for extension into higher-

rank Yang-Mills theories.  And the anticommutator relation is ( ) { }1 1
2 2 ,ij i j j i i jδ σ σ σ σ σ σ= + = .  

Still nothing spooky or quantum mechanical here: just an objective description of how rotations 
occur in a three-dimensional space.   

 
So then, one might take these quaternions / spin matrices and revisit Pythagoras and form 

i iX xσ/ ≡  and discover that the non-trivial square root equations use to describe the Pythagorean 

Theorem in three dimensions are 2 2 2X x y z/ + = + + + +  with + representing “going” from 

A B→ , and 2 2 2X x y z/ − = − + + −  with −  representing “coming” (returning) from 

B A→ .  Quantum language for sure.  And classical Pythagorean geometry for sure. 
 
Now let’s ask about time, which is a fourth dimension.  Classical relativistic physics tells 

us that flat spacetime has a Minkowski metric signature ( ) ( )diag 1, 1, 1, 1µνη = − − − .  So now, in 

contrast to { }1
2 ,ij i jδ σ σ=  which was used to deconstruct Pythagoras in three dimensions, we 

deconstruct Minkowski with { }1
2 ,στ σ τη γ γ= .  The “nuts and bolts” of how Dirac discovered his 

famous Dirac equation, is by finding that there is no way to reproduce ( ) ( )diag 1, 1, 1, 1µνη = − − −  

with a 2x2 matrix, and that one must now go to the 4x4 µγ  matrices.  Now, the eigenvalue 

equation is ( ) 0p m u− =/ , and the eigenvalue / eigenstate associations uncovered are 

p u m u= +/  and p v m v= −/ .  Is there some way to understand these in a similarly 

“classical” way in terms of a vectorial “coming and going”?  The added dimension is time, and 
now the two “points” A and B are the two “events” A and B.  But if we trace this back to the 
Pythagorean roots, we now have coming and going in space and coming and going in time.  So if 
we place A in the past and B in the future, then A B→  represents a future-oriented vector and 
B A→  represents a past-oriented vector.  So u  represents a particle with a vector in a past-to-

future orientation and v  a particle with a vector in a future-to-past orientation.   

 



Jay R. Yablon 
DRAFT – July 30, 2014 

4 
 

We then turn to Feynman-Stückelberg [2] and reinterpret the past-oriented negative 
energy particle as a future-oriented positive energy antiparticle.  So again, what Dirac introduces 
via the deconstruction of { }1

2 ,στ σ τη γ γ=  into 4x4 matrices, is both a “coming and going in 

space” (as specified in (3)) and a “coming and going in time,” with the coming and going in time 
reinterpreted via Feynman-Stückelberg into “always going forward in time” wherein negative 
energy particles back-travelling in time become positive energy antiparticles forward-travelling 
in time.  Pauli incorrectly asserted that the two-valuedness of spin is non-classical, which has 
had the unfortunate impact of making quantum mechanics more opaque than it ought to be.  In 
fact, if the non-trivial square root of Pythagoras tells us that all lengths must have a twofold 
degeneracy of either A B→ or B A→ , then when we start to look at spins in three dimensions, 
spin up simply has its spin axis oriented along the Pythagorean A B→  eigenstate axis, and spin 
down then orients oppositely around B A→  axis.  The fourfold degeneracy of Dirac’s equation 
is then seen as a direct consequence of three space dimensions and one time dimension, where a 
twofold degeneracy of coming and going in time is multiplied by the further twofold degeneracy 
of coming and going in space.  To further demonstrate how these ostensibly “non-classical” 
“mysterious” phenomena can be seen through a fully classical lens, Ohanian in [3] establishes 
how the flow of energies associated with so-called intrinsic spin are entirely classical circular 
energy flows in the electron (Fermion) wave field. 

 
So, what is the point of all this?  The human race has spent a century plus a decade in 

collective hand-wringing over the “weird,” “mysterious,” “strange,” “non-classical,” 
“counterintuitive,” “non-local,” “entangled,” “why would God play dice?” nature of quantum 
mechanics.  But in fact, there are many salient aspects of quantum mechanics that present 
directly and inexorably out of the simple exercise of taking the non-trivial square root of the 
relativistic mass-energy relation 2p p mσ

σ = .  Because the Pythagorean metricity of flat 

spacetime is based on the Minkowksi tensor στη , the Dirac deconstruction of this into 

{ }1
2 ,στ σ τη γ γ=  explicitly introduces a fourfold Dirac degeneracy of eigenstates that represent 

“coming and going vectors” in both space and in time.  Although this degeneracy – which leads 
to such ostensibly-quantum mechanical phenomena as the electron magnetic moment and 
“intrinsic” spin – is in fact entirely understandable classically, it has often not been understood as 
such, which has made the logical consequence of this degeneracy much more difficult to take in 
stride than need be.   

 
Wheeler’s “geometrodynamic” program [4] seeks to understand all of physics as 

emanating from the properties of the spacetime stage in which that physics occurs.  What the 
foregoing shows is that spacetime itself – even the Euclidean Phythagorean four-space of 
Minkowski – already contains many features brought about through the metric deconstruction 

{ }1
2 ,στ σ τη γ γ=  which one associates with quantum theory, but which is in fact traceable to the 

very fact of living in a four-dimensional universe with one time and three space dimensions.  
And these in turn trace back to Pythagoras, which when analyzed using the Pauli matrices, 
teaches the very simple physics notion that when you ascribe a length l to the separation between 
two points A and B, and if you then wish to talk about that length in a physics context, that you 
also need to establish a vector of length l which – as a vector – must also have direction in 
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addition to magnitude.  So we use +  as the eigenstate of 2 2 2X x y z/ + = + + + +  which 

represents the A B→  direction and −  as the eigenstate of 2 2 2X x y z/ − = − + + −  which 

represents the B A→  direction. 
 
One might, a priori, simply regard the deconstruction of 2 0p p mσ

σ − =  into 

( ) 0p m u− =/  as a mathematical convenience and nothing more, and simply view our spacetime 

surroundings in the usual Pythagorean way, and no more.   But the fact is, that when we do 
experiments, and observe electrons with all of the properties predicted by ( ) 0p m u− =/  which 

are hidden from view in the Pythagorean square equation 2p p mσ
σ = , we understand that the 

deconstruction { }1
2 ,στ σ τη γ γ=  is more than just a mathematical curiosity.  We realize that it 

reveals something about the intrinsic nature of our physical spacetime that is simply not apparent 
if one sticks only to the equation 2p p mσ

σ = .  But what it reveals are phenomena which we often 

think of as “quantum mechanical” and thus as counterintuitive, etc., when in fact these 
phenomena are endemic to the very nature of spacetime and thus fully geometrodynamic.  When 
we ask “who is the culprit?” responsible for at least some fair share of quantum physics, the 
answer is now clear: Pythagorean spacetime itself! 

 
One wonders from all this, how differently our understanding of quantum reality might 

have evolved if Pythagoras had himself discovered quaternions, and 2500 years ago, had taught 

that  2 2 2X x y z/ + = + + + +  and 2 2 2X x y z/ − = − + + − , in contrast to the historical 

accident whereby all we had to go on for 2500 years was 2 2 2l x y z= ± + + . 
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