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1. Introduction: Is there a Valid Method for Defining Quark Masses with 
High Precision? 
 
 In two earlier peer-reviewed papers [1], [2] the author demonstrated within parts per 105 
AMU and better precision how the binding and fusion energies of the 2H, 3H, 3He and 4He light 
nuclides as well as the binding energy of 56Fe could be explained as a function of only two 
parameters, namely, the current masses of the up and down quarks, found with extremely high 
precision in AMU to be mu = 0.002 387 339 327 u and md = 0.005 267 312 526 u, see [10.3] and 
[10.4] and section 4 of [2] as well as section 12 of [1].  Using the conversion 1 u = 931.494 
061(21) MeV [3] this equates with some loss of precision [4] to mu = 2.223 792 40 MeV and md 
= 4.906 470 34 MeV, respectively.  In an International Patent Application published at [5], this 
analysis was extended to 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N with equally-
high precision.  And in [6] this analysis was extended using the Fermi vev vF=246.219651 GeV 
and the Cabibbo, Kobayashi and Maskawa (CKM) mass and mixing matrix as two additional 
parameters, to explain the proton and neutron masses MN = 939.565379 MeV and MP = 
938.272046 MeV [7], completely within all known experimental errors. 
 
 Yet, there is one underlying point which has not been sufficiently explained in any of 
these prior papers: the Particle Data Group (PDG) lists these two current-quark masses to be to 

0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−=  with large error bars of almost 20% for the down quark 

and almost 50% for the up quarks, “in a mass-independent subtraction scheme such as MS  

[modified minimal subtraction] at a scale 2GeVµ ≈ .” [8] (Note that MS  and similar 
renormalization schemes are used to absorb the divergences from perturbative calculations 
beyond leading order.)   In other words, the PDG values are extracted for a given renormalization 
scale and are actually a function of this scale and of the renormalization scheme.  So although 
these mu = 2.223 792 40 MeV and md = 4.906 470 34 MeV found by the author are well-placed 
near the center of these PDG error bars, the claimed precision raises the question: can we really 
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talk about and understand these quark masses with such high precision, in a fashion which is 
independent of renormalization scale and scheme?  More plainly put: is there some sensible way 
to simply state that “the up and down quark masses are X and Y,” with X and Y being some 
mass-energy numbers which have an extremely small error bar due to nothing other than the 
accuracy of our measuring equipment?  Is there a sensible, definite, unambiguous, very precise 
scheme we can use to define the current quark masses, consistent with empirical data, which 
scheme is renormalization scale-independent? 
 

Specifically, the author’s prior findings that mu = 2.223 792 40 MeV and md = 4.906 470 
34 MeV (these same masses were shown above even more precisely in AMU) with a precision 
over a million times as tight as the PDG error bars, even if mathematically correct in relation to 
the nuclear masses with which these quark masses are interrelated, presuppose an understanding 
of how these quark masses are to be physically defined and measured and understood.  Without 
such an understanding, the author’s prior work is incomplete, and to date, the author has not 
directly and plainly articulated this understanding. 

 
The intention of the present paper is to remedy this deficiency by making clear that the 

mass defects found in nuclear weights which are related in a known way to nuclear binding and 
fusion / fission energies, are in fact a sort of “nuclear DNA” or “nuclear genome” the proper 
decoding of which teaches about nuclear and nucleon structure and the masses of the quarks in a 
way that has not to date been fully appreciated.  In contrast to the nuclear scattering schemes 
presently used to establish quark masses, which are all based on renormalization-dependent, 
energy scale-dependent experiments involving scattering of nuclides and nuclei, the scheme 
which has been implicitly used by the author which this paper will now make explicit, is a 
nuclear mass defect scheme in which quark masses are defined in relation to the objective, very 
precise, experiment-independent, scale-independent, long-known energy numbers that have been 
experimentally found and catalogued for the nuclear mass defects, weights, binding energies, and 
fusion / fission  energies. 

 
All scattering experiments essentially bombard a target and use forensic analysis of the 

known bombardment and the found debris to learn about the nature of the target prior to 
bombardment.  In contrast, mass defects are no more and no less than an expression of nuclear 
weights requiring no bombardment of anything.  In this context, the prevailing scheme for 
characterizing quark masses has wide error bars because it is based on “bombing” the nuclides 
and nuclei, while the scheme to be elaborated here has very high precision because it is a 
“weighing” scheme which uses only nuclide and nuclear weights and so inherits the precision 
with which these weights are known.  Colloquially speaking, the scheme to be articulated here 
has very tight error bars because it is based on non-intrusive nuclear “weighing” rather than 
highly-intrusive nuclear “bombing,” and because nuclear weights themselves are very precisely 
known while scattering experiments introduce renormalization and scale issues which ruin 
precision and the ability to establish an unambiguous approach for specifying quark masses. 
 
2. Running Couplings, Vertical Confinement and Horizontal Freedom 
Asymptotes, Dimensional Transmutation, and the Q�0 Limit in QCD 
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 The electromagnetic interaction, and the electron which is a most important fermion 
source of this interaction, furnish the best starting point for analyzing the questions about 
renormalization and ambiguity posed in the introduction.  Maxwell’s electrodynamics, when 
extended into non-abelian domains by Yang-Mills gauge theories, and when SU(3)C is the 
particular Yang-Mills group chosen for consideration, is the template that one customarily uses 
to initiate study of strong chromodynamic interactions.  And the electron, which is an elementary 
spin ½ fermion subsisting in a U(1)em singlet following electroweak SU(2)W × U(1)Y symmetry 
breaking, is the template best used to contrast the quarks which also have spin ½, which are also 
regarded as “elementary” (at least to the same degree and in the same manner that electrons are 
elementary), but which form an SU(3)C color triplet. 
 
 It is also important to keep in mind that Quantum Chromodynamics (QCD) is a branch of 
elementary particle physics insofar as it is used to describe the strong interactions between 

colored (R, G, B) quarks such as up and down quark flavors, via bi-colored (e.g., RG) gluons all 
confined within a baryon.  Meanwhile, nuclear physics is used to describe the interactions 
between color-neutral baryons such as the proton and neutron baryon flavors with a 
wavefunction R G B RGB GBR BRG RBG BGR GRB∧ ∧ ≡ + + − − −  that is antisymmetric under 
color interchange.  And these nuclear interactions transpire via color-neutral mesons such as the 

pion-flavored mesons originally predicted by Yukawa [9] with a wavefunction RR+GG+BB that 
is symmetric under color interchange and which have short range but are not confining.  
Although the elementary particle physics of colored quarks and bi-colored gluons and the 
nuclear physics of color-neutral baryons and mesons are often lumped together as one discipline 
in loose discourse, they are in fact distinct disciplines bridged via so-called hadronic physics in a 
fashion that to this date is still not fully understood.  In many ways, this paper will seek to 
strengthen understanding of this hadronic bridge between elementary QCD particle physics and 
nuclear physics to advance unification among all of these physical disciplines, by showing how 
the masses of quarks which are elementary, are interrelated with the masses and binding energies 
of nucleons and nuclei which are not elementary. 
 
 It should also be kept in mind that the author’s thesis first published in [1] that baryons 
are the chromo-magnetic monopoles of Yang-Mills gauge theory is a direct consequence of the 
fact baryons have a color symmetry [ ] [ ] [ ]R G B=R G,B G B,R B R,G∧ ∧ + +  which is 

antisymmetric under color interchange while magnetic monopoles which have the spacetime 
symmetries of F F Fσ µν µ νσ ν σµ∂ + ∂ + ∂  where F Fµν νµ= −  is an antisymmetric field strength tensor 

whether it is abelian or non-abelian, so that the monopoles are likewise antisymmetric under 
spacetime index interchange.  In the former case there are three colors and in the latter three 
spacetime indexes, and in both cases the interchange symmetry is antisymmetric in identical 
fashion.  The physically-meaningful link between these alike color and spacetime symmetries 
which demonstrates that baryons are the chromo-magnetic monopoles of non-Abelian gauge 
theory – i.e., the connection which advances us from like-symmetries to the formal identification 
of chromo-magnetic monopoles with baryons – is established in section 5 of [1] and deepened in 
section 10 of [10] which is presently under review at Physical Review D as manuscript 
DK11244, through the application of the Fermi-Dirac-Pauli Exclusion Principal. 
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 Now, when we talk about the electromagnetic interaction, we can readily state that the 
dimensionless “running” coupling of this interaction is measured to be the rather precise  αem = 

2 / 4e cπ ℏ  = 1/137.035 999 074 for low probe energies, where e is the electric charge strength, 
and specifically, that this “fine structure” number is the horizontally-asymptotic value of αem as 
the renormalization scale 0Q → , with Q plotted horizontally and the function αem(Q) plotted 
vertically.  We also know that as the renormalization scale Q is increased, so too is the strength 
of this interaction, which in quantum field theory is an important distinguishing feature between 
an abelian interaction and a non-abelian interaction.  So, for example, when WQ M≈ , we also 

have αem ≈  1/128.  [3]     
 

Likewise, when we talk about the mass of the electron, we can state that me = 0.510 998 
928 ± 0.000000011 MeV, [11] which expresses an extremely high measurement precision 
limited only by the accuracy of our laboratory equipment.  But just as the running coupling αem is 
a function of renormalization scale Q, so too is the measured electron mass me.  So when we 
make the foregoing statement as to the energy number associated with the electron mass, we are 
implicitly stating that this is the horizontally-asymptotic value of this mass for 0Q → .  At any 
deep probe scale, this mass is also expected to “run” just like the running coupling / charge 
strength.   So whether stated explicitly or understood implicitly, we are defining the mass and 
electric charge strength of the electron based on what is asymptotically observed at Q = 0, and 
with this definition, we are able to express both αem and me with a high precision limited only by 
our measuring instrumentation.  But we are only able to do this because the natural world 
obliges us by providing a running electromagnetic coupling and a running electron mass which 
are in fact horizontally-asymptotic in the 0Q →  limit. 
 

So the question now arises, if we can define charge strength and mass in this way for 
electromagnetic interactions and electrons, can we not do the same for strong interactions and 
quarks?  That is, why can’t we just define the running strong coupling αs and the up and down 
(and other) quark masses based on their horizontally-asymptotic values as the renormalization 
scale 0Q → ? 
 
 The answer is evident from the very asking of this question: we cannot establish a 
definition for the quark charges and masses similar to that for the electron charges and masses 
precisely because quarks are confined and not free.  Quarks are not free particles in the same 
manner as electrons; they are only asymptotically free [12] deep inside a nucleon from which 
they can never be individually removed.  Quantum Electrodynamics (QED) is abelian while 
QCD is non-abelian, so the running coupling curves are flipped in their qualitative features over 
the Q domain axis.  In QCD, the running coupling αs and quark masses mq approach a horizontal 
asymptote, not as 0Q → , but as Q → ∞ , or at least as Q reaches some very large energy 
associated with the horizontal asymptotic freedom observed deep inside a nucleon via deep 
inelastic scattering (DIS).  So notwithstanding their similarities because they are both rooted in 
Maxwell’s electrodynamics, the confining nature of SU(3)C as a non-abelian interaction is what 
makes strong interactions qualitatively different from U(1)em electromagnetic interactions which 
are abelian.  And notwithstanding the similarities of quarks to electrons as spin ½ fermions 
which are equally-elementary, the confinement of quarks within nucleons is what makes them 
qualitatively different from electrons (and leptons generally). 



NOVEMBER 1, 2014 DRAFT – SUBJECT TO PROOFREAD AND REVISION 
J. R. Yablon 

6 
 

 
 The parameter QCDΛ  at which dimensional transmutation occurs in QCD provides a good 

quantitative vehicle to discuss these qualitative differences.  Referring to Figure 9.4 of [13] 
reproduced as Figure 1 below for the reader’s convenience, QCDΛ  specifies the energy-

dimensioned domain value of a vertical asymptote approached by the dimensionless function 

( )s Qα  at QCDQ = Λ  from right-to-left along the QCDQ > Λ  domain.  For example, for a six-flavor 

quark model in the MS  scheme, as laid out in [9.24a] of [13] and the associated discussion, this 
vertical asymptote is determined to be situated at QCD 90.6 3.4 MeVΛ = ± , which is one order of 

magnitude left of the leftmost domain of Figure 1.  And, as Q grows larger beyond the rightmost 
domain of Figure 1, there is also a horizontal asymptote associated with asymptotic freedom.  So 
in contrast to an abelian interaction like QED, the horizontal asymptote appears in the large-Q 
rather than the 0Q →  domain, as discussed, and so is qualitatively flipped.  Via the conversion 
constant .197 326 9718GeV fmc =ℏ  [3] which in natural units 1c= =ℏ  may be rewritten as 

11GeV 5.067 730 939 fm−= , one is able to deduce using the median value QCD .0906 GeVΛ = , 

that ( )1 1
QCD .0906 GeV .0906 5.0677 fm .4591 fm 1/ 2.1780 fm− −Λ = = × = = .  So in the six-flavor 

quark model, the deBroglie length associated with this vertical asymptote of confinement at 

QCDΛ  is QCD/ 2.1780 fmr cΛ ≡ Λ =ℏ , i.e., just over 2 Fermi in length dimension. 

 
Figure 1: The Running Strong Coupling (reproduced from PDG’s [13], Figure 9.4) 
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So while we are able in QCD to talk about the running of the strong coupling 
2 / 4s sg cα π= ℏ  and strong charge sg  acting between quarks for QCDQ > Λ  as illustrated in 

Figure 1, it makes no sense to talk about the running of sα  for QCDQ < Λ , or especially for 

0Q → , as we are able to do for emα  in QED.  In fact, when we do experiments in the low-energy 

QCDQ < Λ  domain, we are no longer observing strong interactions between quarks confined 

within a nucleon with a strength measured by sα .  Rather, we are observing nuclear interactions 

between nucleons.  Further, these nuclear interactions are observed to have a very short range 
and exponentially diminish to zero beyond separations of a few Fermi in length.  For example, 
because of this exponential strength diminution, nuclei heavier than about 56Fe start to manifest 
inherent instability because nucleons (protons and neutrons) within the same nucleus become 
situated far enough apart that the nuclear force no longer holds them in the nucleus.  So, in 
contrast to the strong interaction between quarks in the six-quark model which has a short range 
on the order of 2.1780 fmrΛ =  which grows vertically-asymptotically stronger and becomes 

infinite so as to enforce confinement as QCDQ → Λ  from right-to-left, the nuclear interaction is 

short range because it grows exponentially-smaller for QCDQ < Λ  from right-to-left and 

exponentially attenuates to zero strength beyond a distance of several Fermi. Thus, as we move 
laterally across the vertical asymptote at the energy QCDΛ  and its length equivalent rΛ , we are 

implicitly crossing the disciplinary boundary between the strong elementary particle physics of 
quarks, and the nuclear physics of nucleons and the assemblies thereof known as nuclei.  That is 
the boundary sought to be bridged by hadronic physics. 
 

Consequently, while in QED we can define 1/137.035 999 074 as the dimensionless 
strength of αem for 0Q =  because electrodynamics is an abelian interaction which thereby has a 
horizontal asymptote as 0Q → , we cannot employ a similar definition in QCD.  Because of 
QCD’s non-abelian character, the horizontal asymptote of QED as 0Q →  is flipped to the 

horizontal asymptote of asymptotic freedom for QCDQ Λ≫ , and the “low energy” domain is 

bounded on the left by a vertical asymptote at QCDQ = Λ .  The 0Q →  limit for sα  is effectively 

meaningless in QCD, because as 0Q →  the only pertinent interaction is the nuclear interaction 
and not the strong interaction between quarks.  And that nuclear interaction, being short-range 
with exponential attenuation, has zero strength at 0Q =  rather than a finite number like the 
meaningful αem = 1/137.035 999 074 found in electrodynamics.  So instead of characterizing the 
strong interaction strength starting with a dimensionless value of 0sα =  at 0Q =  like we use αem 

= 1/137.035 999 074 for QED, we define the strong interaction via the transmuted energy-
dimensioned parameter QCDΛ  at which there is a vertical asymptote toward which sα → ∞  from 

the right as in Figure 1.  And then for QCDQ > Λ , sα  depends very definitively on the energy 

scale Q, and in addition, it depends on the specific renormalization scheme used to absorb the 
higher-order perturbative divergences.   

 
In sum: The dimensionally-transmuted energy number QCD .0906 GeVΛ =  in six-quark 

QCD serves the exact same role for QCD as does the dimensionless number αem = 1/137.035 999 
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074 for QED in establishing the leftmost domain of the running couplings αs and αem.  For QED, 
the “fine structure” number 1/137.035 999 074 tells us the dimensionless magnitude of αem as 

0Q →  for which nature obliges us because the running coupling for an abelian interaction 
actually does approach a horizontal asymptote as 0Q → .  But nature does not similarly oblige 
us for a non-abelian interaction such as QCD.  Now, at the low-energy boundary of the 
meaningful domain, for six quarks, there is a vertical asymptote for which sα → ∞  at 

QCD .0906 GeVΛ = , and αs has no meaning for QCD0 Q< < Λ  because that is the domain of 

nuclear interactions between baryons not strong interactions between quarks.  So we are 
compelled to use the energy dimensioned number QCD .0906 GeVQ = Λ =  to tell us the Q at 

which the dimensionless number αs approaches its low-energy vertical asymptote.  Therefore, 
while the 0Q →  limit is meaningful for QED because 1/137.035 999emα →  in this limit, the 

meaningful limit for QCD is QCD .0906 GeVQ → Λ =  because sα → ∞  in this limit.  The 0Q →  

limit still does have meaning, but at least based on initial appearances, not for strong interactions 
between and among quarks.  It has meaning for nuclear interactions between and among 
baryons, although at this limit, there is no interaction because of the exponential attenuation of 
the nuclear interaction strength. 

 
Now, we have laid out sufficient background to return to the problem of how to define 

current quark masses. 
 

3. Primary Relationships among the Up and Down Current Quark 
Masses, and the Electron, Proton and Neutron Masses, and the Three 
Questions they Raise 

 
In QED we are able to use the 0Q →  limit to define the electron rest mass me = 0.510 

998 928 ± 0.000000011 MeV because there is a horizontal asymptote at αem = 1/137.035 999 in 
this limit and because electrons are free particles which can have their attributes such as mass 
and charge and spin measured directly and with precision.  But in QCD the 0Q →  limit appears 
to be taken off the table, and the low-energy limit for meaningful discourse appears to be 

QCD .0906 GeVQ = Λ =  at which sα → ∞  and quarks are confined.  Plainly put: it is impossible 

to take a quark out of a baryon and measure its mass mq in the 0Q →  limit in the same way that 
we would measure an electron mass.  Thus, to try to define current quark masses based on their 
measured values ( )0qm Q=  would appear to make no sense because this is a measurement 

which it is physically impossible to ever take for an individual quark!  How can we define a 
quark mass mq based on its value at 0Q =  when it impossible to ever take such a measurement at 

0Q = ?  We would be using a definition that can never be experimentally validated! 
 

But, as we do for free electrons, it is possible to take 0Q =  mass measurements for 
baryons such as protons and neutrons, and indeed, we know very precise values for these 
measurements, namely MP = 938.272046±0.000021 MeV and MN = 939.565379±0.000021 MeV 
[7].  So while we certainly cannot directly measure quark masses ( )0qm Q= , we are able to 
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directly measure baryon (B) masses ( )0BM Q = .  And of course, baryons contain quarks, and 

protons and neutrons which are the most abundant and stable flavors of baryon contain the up 
and down flavors of quark.  So the question arises whether it might be possible to measure 

( )0qm Q= , not directly, but indirectly, by inference, from the direct measurements of 

( )0BM Q =  which are well known with some substantial degree of precision, and whether this 

precision might then be inherited by the indirectly-defined ( )0qm Q= . 

 
As we shall now start to explore, this is indeed possible, if, as stated in the introduction, 

we employ a scheme based on non-intrusive nuclear “weighing” rather than the highly-intrusive 
nuclear “bombing” of scattering experiments.  Moreover, once we have defined the up and down 
current quark masses based on indirect inference from nuclear weights rather than direct 
inference from deep nuclear scattering, it becomes possible with high precision to use these 
quark masses to also explain the empirical binding energy and nuclear weight and mass defect 
and fusion energy data of multiple light nuclides which data has heretofore never been given a 
satisfactory explanation.  This in turn serves to validate the initial indirect inference of quark 
masses from nuclear weights.  Theoretically, all of this is rooted in and emerges from the 
author’s thesis in [1] as further developed in [10] that baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory. 
 

The up and down quark masses are indirectly inferred from the 0Q =  proton and neutron 
masses, as well as the 0Q =  electron mass, using the following two relationships which for the 
moment will simply be stated, and which we shall later explain and support based on the thesis 
that baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory.  First, as initially 
found in [11.23] of [1], the difference between the up and down current quark masses is related 
to the electron rest mass according to: 
 

( )
3
22

3d u e

π
m m m− = . (3.1) 

  
Second, as initially found in [A15] and [7.2] and section 10 of [2], the difference between the 
neutron and proton masses is related to the up and down current quark masses and the electron 
mass, and via (3.1) through which we can eliminate em , exclusively to the up and down current 

quark masses, according to: 
 

( ) ( )
3 3
2 2

2 3 3 2

2 2

µ d d u µ d

N P u e u

m m m m m m
M M m m m

π π

− +
− = − − = − . (3.2) 

 
We shall regard (3.1) and (3.2) above to be exact relationships not only Q = 0, but for all Q, 
which is to say, we shall take these to be both exact and Q-invariant.  And we shall use these 
relationships as the starting point to obtain many other relationships – most very close to 
empirical data albeit still approximate – intended to contradict or validate our treatment of (3.1) 
and (3.2) as exact, Q-invariant relationships.  For these reasons, simply to provide a shorthand 
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for discourse, we shall henceforth refer to (3.1) and (3.2) above as the “primary mass 
relationships” among the up and down current quark masses, and the electron, proton and 
neutron masses.  It will be appreciated, because em  in (3.1) is known with very high precision, 

and because N PM M−  in (3.2) is known with similarly high precision, that when we take (3.1) 

and (3.2) together, and if we do regard these as exact and Q-invariant as just discussed, that we 
can combine these to deduce um  and dm  with commensurately-high precision. 

 
 This calculation is performed in section 10 of [2] using the AMU median empirical 
values 0 000 548 579 909 uem .=  [11], 1.008 664 916 0 uNM =  and 1.007 276 466 8 uPM =  [7] 

which all have been experimentally measured to ten or more digits of precision in AMU.  So, 
using these values in (3.1) and (3.2) above leads us to deduce in [10.3] and [10.4] of [2], to the 
same ten-digit precision as the proton and neutron masses that: 
 

0 002 387 339 3 2.223 792 40 eu M Vum .= = , (3.3) 

0 005 267 312 5 4.906 470 34 eu M Vdm .= = . (3.4) 

 
As noted in the introduction, the median electron mass to the same precision level in MeV is me 
= 0.510 998 93 MeV.  Certainly, (3.3) and (3.4) converted to MeV fit well within the PDG error 
bars which inform us that 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  [8], so we at least know that 

there is no direct empirical contradiction to these results from this particular data. 
 
 Starting from (3.3) and (3.4) as deduced from the primary mass relationships (3.1) and 
(3.2), there are three questions which now need to be explored: 
 
1) Legitimate, Unambiguous Measurement Scheme: Can we make such a precise statement 
as to the masses of the up and down quarks, given: the wide PDG error bars 0.7

0.52.3 MeVum +
−=  

and 0.5
0.34.8 MeVdm +

−= ; that these error bars reflect that quark masses are thought to be dependent 

upon the renormalization scheme and the renormalization scale Q; that quarks are confined and 
so can never have their 0Q =  masses directly measured in the same way we are able to measure 
the electron mass 0Q = ; and that the only domain within which it even starts to make sense to 

talk about directly measuring a quark mass is the domain where QCDQ ≥ Λ ?  Indeed, these wide 

error bars emerge because it is widely perceived that QCDQ ≥ Λ  is the only domain in which it 

makes sense to talk about current quark masses, and because, as seen in Figure 1, measurement 
in this domain – invariably via scattering experiments at various depths – is so highly-dependent 
upon the scale Q and the renormalization scheme we use.  In short, can we use (3.3) and (3.4) as 
precise statements about the 0Q =  up and down quark masses, in view of all the issues just 
reviewed in section 2? 
 
2) Clear Secondary Empirical Support: If we can legitimately assert (3.3) and (3.4) to be the 

0Q =  up and down quark masses by overcoming the “measurement” challenges of point 1 and 
section 2 above, are (3.3) and (3.4) supported by empirical particle data?  This is a 
straightforward question as to whether nature supports (3.3) and (3.4) based on energies we 
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observe when we do experiments.  As noted, the results mu = 2.223 792 40 MeV and md = 4.906 
470 34 MeV certainly are not contradicted by PDG’s 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−= ; 

indeed, they sit fairly near the mean of this data.  But it would be desirable to see if (3.3) and 
(3.4) can be supported by additional empirical data beyond the electron, neutron and proton 
masses from which they were deduced via (3.1) and (3.2), via what we shall refer to as 
“secondary relationships.”  Specifically, if (3.3) and (3.4) are indeed correct valuations for the up 
and down current quark masses on a 0Q =  scale, and because the neutron,  proton and electron 
masses are already related to these via (3.1) and (3.2), it seems plausible that other energies of 
interest, namely the binding, fusion, mass defect and nuclear weight energies of light nuclides 
such as hydrogen and helium and lithium and beryllium, etc., might also be related to and be 
secondary functions of these exact same 0Q =  quark masses.  In other words, if (3.3) and (3.4) 
are legitimately-defined 0Q =  quark masses, then these masses will always be the 0Q =  quark 
masses, whether these quarks are in a free proton are neutron, or, for example, are in a proton or 
neutron inside of an alpha particle (4He nucleus), or in a proton or neutron inside an 56Fe nucleus, 
or are deep within the bowels of a lead or a uranium nucleus, etc.  And that means that we should 
be able to specify the observed nuclear data for any and all types of nuclei, solely as a function of 
these two quark masses!  This provides ample latitude for empirical contradiction.  But at the 
same time, if a substantial number of nuclides can indeed have their nuclear data parameterized 
using secondary relationships based exclusively on the two masses (3.3) and (3.4), this would 
represent compelling empirical support for these results. 
 
3) Solid Theoretical Foundation: If we can legitimately assert (3.3) and (3.4) to be the 0Q =  
up and down quark masses and if we can find secondary support from a broad array of nuclear 
data, then we get to the third question: what is the overarching theory, and does that theory make 
sense within the overall framework of theoretical physics?  As stated, that theory, first laid out in 
[1] and further developed and refined in [10], asserts that baryons are the color-neutral chromo-
magnetic monopoles of non-Abelian Yang-Mills gauge theory.  It is from this theory that the 
primary mass relationships (3.1) and (3.2) were initially discerned, and upon which the 2H, 3H, 
3He and 4He [2] and 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N [5] binding energies 
can be explained exclusively as a function of the two masses (3.3) and (3.4), via a series of 
secondary relationships, to at least parts per hundred thousand AMU in all cases.  And it is from 
this theory that once the Fermi vev vF=246.219651 GeV and the Cabibbo, Kobayashi and 
Maskawa (CKM) mass and mixing matrix are also admitted as parameters alongside of these two 
quark masses, the proton and neutron masses [6] can be fully explained within all known 
experimental errors.   
 
 So for the balance of this paper, we shall address each of these questions in turn. 
 
4. Does Deduction of Very Precise Q = 0 Up and Down Current Quark 
Masses from the Q = 0 Electron, Proton and Neutron (EPN) Masses Establish 
a Legitimate Measurement Scheme?      
 
 As discussed at the start of section 3, because quarks are confined it is impossible to ever 
measure their 0Q =  masses directly, because to access a quark in the six quark model (which 
clearly looks to be what nature chooses and which we shall henceforth regards as nature’s 
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choice) one must provide an impact energy at least on the order of QCD .0906 GeVQ = Λ = .  In 

other words, to directly detect of any attributes of an individual quark, and indeed its very 
existence, one must supply an impact energy north of about 90 million electron volts.  So 
whatever attributes we observe by definition will not be the 0Q =  attributes of the observed 

quark.  This is the measurement problem which leads to the large error bars 0.7
0.52.3 MeVum +

−=  

and 0.5
0.34.8 MeVdm +

−= wherein the quark masses are dependent upon the chosen measurement 

scheme, and once a scheme is chosen, on the choice of Q given that 0Q =  quark attributes 
appear to not be measurable because quarks are confined, not free, particles. 
 
 But in (3.1) and (3.2) we have chosen a measurement scheme by which the up and down 
quark masses are inferred indirectly from the 0Q =  electron, proton and neutron masses.  Just 

like minimal subtraction MS and modified minimal subtraction MS , (3.1) and (3.2) do represent 
a measurement scheme for quark masses, albeit a different scheme from the usual.  The question 
here is whether this is different scheme is a legitimate measurement scheme. 
 
 Now, any time that we do an experiment for which 0Q >  we are necessarily doing a 
scattering experiment, which is to say, we are bombarding a target in some fashion and 
discerning information about the target via forensic analysis of the post-bombardment debris 
coupled with knowledge of the bombardment we employed.  No matter how it is couched in its 
specifics, any experiment with 0Q >  is by definition causing an impact with the target we seek 
to study, and in the course of obtaining information about the target we are necessarily altering 
the target.  Thus, when we use several different Q at several different times, we have to prepare 
for the possibility that what we are measuring about the target will take on several different 
values, with no one particular value being any more correct or unique than any other value.  
Thus, we will have error bars stemming from more than just the limitations of our measuring 
equipment.  To use the colloquialism of section 1, such an experiment entails bombing the target, 
not weighing the target. 
 
 Conversely, merely taking the weight of a body is the quintessential 0Q =  experiment, 
whether that body is a person or a baseball or an electron, proton or neutron.  Subject to the 
caveat in the next paragraph, we do not have to impact a body in order to weigh that body; we 
merely place it on a scale and then rely upon the equivalence of gravitational and inertial mass.  
So we are able to say that at 0Q =  the mass of the electron is 0 000 548 579 909 uem .= , period.  

And we are similarly able to say that at 0Q =  the masses of the proton and the neutron are 

1.008 664 916 0 uNM =  and 1.007 276 466 8 uPM = , period.  We do not need to talk about the 

measurement scheme, and we do not need to talk about the renormalization scale Q other than to 
understand that by definition we are using 0Q = .  Of course we have the option if we wish to 
study how these masses may vary from their 0Q =  values for various 0Q ≠ .  But 0Q =  does 
provide a uniqueness which is not provided by any other Q, with the possible exception of 

QCD .0906 GeVQ = Λ =  which happens to coincide with the confining sα = ∞  and so presents 

other measurement challenges. 
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 Now, of course, someone who is familiar with experiments used to obtain the above-
recited electron, proton and neutron masses will understand the caveat that nobody can really put 
one of these particles on a scale and “weigh” that particle in the same manner that we can weigh 
ourselves or weigh a macroscopic object.  The experiments used to establish these masses 
themselves do have some 0Q ≠  scattering aspect.  However, the electron, proton and neutron 
are all free particles unlike quarks, and their masses approach asymptotic values as 0Q → .  So 
by doing enough experiments on these free particles – even with some impact – it is possible to 
deduce the asymptote that is approached by the masses of each of these particles.  Therefore, the 
precision with which the experimental community has succeeded in doing this is effectively 
expressed by the mass values and associated experimental errors for em , PM  and NM   given in 

[11] and [7].  The same can also be said for measurements of the masses of composite nuclides, 
such as 2H, 3H, 3He, 4He, etc. 
 
 So when we take the expressions (3.1) and (3.2), plug in the 0Q =  “weights” of the 
electron, proton and neutron, and thereby deduce (3.3) and (3.4) for the up and down quark 
masses, what we have discerned – albeit indirectly – must also be regarded as the 0Q =  
“weights” of these two quarks.  Again, this is certainly a different scheme from the minimal 
subtraction schemes which are usually employed to specify quark masses and other running 
attributes.    
 

But irrespective of the specifics of relations (3.1) and (3.2), if we were to establish some 
pair of valid relations which express the up and down quark masses in relation to the electron, 
proton and neutron masses such that these two quark masses are uniquely fixed once these other 
three masses are fixed, then by employing the 0Q =  values of the electron, proton and neutron 
masses, we would necessarily be deducing the 0Q =  values of the up and down quark masses, 
and we would have a legitimate measurement scheme.  The point here is that this “weighing, not 
bombing” scheme is not wedded to the specifics of (3.1) and (3.2), but rather, to the question of 
whether any valid relationships which might uniquely output the up and down quark masses 
once the 0Q =  electron, proton and neutron masses are given can be said to yield legitimate 
values for the 0Q =  quark masses. 
 
 Understood in this manner, it should be clear that it is perfectly legitimate as a matter of 
defining a measurement scheme to specify 0Q =  confined quark masses in relation to the known 
masses of other particles which are free and which can be observed asymptotically in the low-Q 
energy domain, if such relationships exist and can be found.  So the real question becomes 
whether there do in fact exist some of valid relations in nature by which the up and down quark 
masses can be uniquely deduced from the electron, proton and neutron masses (or any other free 
particle 0Q =  masses), and if so, what those relationships are and whether (3.1) and (3.2) are in 
fact those relationships. 
 
 If it should turn out that (3.1) and (3.2) are valid relationships, then (3.3) and (3.4) are 
indeed the 0Q =  masses of the up and down quarks, and the measurement scheme for defining 
these quark masses in this way is perfectly legitimate.  Further, by having these two mass values 
(3.3) and (3.4), we now know the quark masses to a precision that is close to a billion times more 
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precise than what we learn from 0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−=  based the MS  scheme.  

It is the foregoing elaboration of how the quark masses 0 002 387 339 3 uum .=  and 

0 005 267 312 5 udm .=  can be legitimately defined from the proton, neutron and electron 

masses with a precision vastly exceeding the PDG data based on MS , which was absent from 
the authors prior work, and which should remedy this deficiency.  And it should also be very 
clear that a second scheme which allows the quark masses to be defined close to a billion times 
more accurately than a first scheme is manifestly preferable to the first scheme.  So that is the 
scheme that the author is proposing for defining the up and down quark masses.  Because this 
scheme defines 0Q =  up and down current quark masses in (3.3) and (3.4) from the 
relationships (3.1) and (3.2) using the 0Q =  electron (E), proton (P) and neutron (N) masses, we 
shall refer to this as the EPN measurement scheme with an EPN-0 definition for the up and down 
quark masses.  Of course, relationships (3.1) and (3.2) should apply at all Q.  So if one were to 
know how each of ( )em Q , ( )PM Q  and ( )NM Q  run as a function of Q, one would then use 

(3.1) and (3.2) to further derive ( )um Q  and ( )dm Q .  In this way the EPN scheme provides a 

consistent and unambiguous basis for first defining the up and down quark masses at 0Q = , and 
for then ascertaining how they run as a function of increasing scale Q, all based on three masses 

em , PM  and NM  which are each known at 0Q =  with very high precision.  And it avoids the 

pitfalls and ambiguities of having to define quark masses based on probing inside the nucleons in 
a fashion that will necessarily make these masses a function of our experiment. 
 
 So with the measurement question of how best to define the current quark masses now 
addressed, we next turn to question whether (3.3) and (3.4) are indeed the correct physical, 

0Q =  quark masses.  If they are, then this in turn would validate the relationships (3.1) and (3.2) 
and the theory from which these are obtained.  Certainly, the fact that masses (3.3) and (3.4) fit 
well within 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  provides preliminary validation for these 

masses by failing to invalidate these masses.  But this is a starting point, not an endpoint. Now 
we arrive at the second question posed in section 3, whether the quark masses (3.3) and (3.4) 
have clear secondary empirical support. 
 
5. Origins of the Primary Mass Relationships used in the EPN 
Measurement Scheme 
 

In section 3, we simply stated the primary mass relationships (3.1) and (3.2).  Now it is 
appropriate to begin discussing their physical origins based on the thesis that baryons are the 
chromo-magnetic monopoles of Yan-Mills gauge theory.  First, let us just lay out some general 
background. 

 
It is well-known that ( )( )/T gµν µ µν

νφ φ= ∂ ∂ ∂ ∂ −L L  is the canonical energy-momentum 

tensor for a given field ϕ  with associated Lagrangian density L .  If we require the spatially-

integrated Lagrangian 3L d x= ∫∫∫L  to be stationary under small field variations, then the 

( )( )/µ
νφ φ∂ ∂ ∂ ∂L  term can be neglected and this becomes T gµν µν= − L .  So in flat spacetime 
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with 100 =g  we have L−=00T .  Therefore the total energy E of the system associated with L  

will be 00 3 3E T d x d x L= = − = −∫∫∫ ∫∫∫L .  And more simply, E L= − . 

 
Now, in abelian electrodynamics, the Lagrangian density associated with a pure gauge 

field F µν  is given by 1
4 F F µν

µν= −L , and so 3 31
4E L d x F F d xµν

µν= − = − =∫∫∫ ∫∫∫L  will specify 

the energy arising from the pure gauge field terms.  In Yang-Mills gauge theory the field strength 
may still be written with Fµν  as shorthand, but it contains additional internal symmetry structure 

which must be understood.  Particularly, for any simple unitary gauge group SU(N) there are a 
set of generators iλ  with 21... 1i N= −  forming a closed group and commuting according to 

,i j ijk kifλ λ λ  =  , conventionally normalized to 2 1
2Tr iλ = .   Each of these generator matrices 

has rank 2 with an N×N dimensionality, so to be fully explicit we must represent these matrices 
by i

ABλ  with , 1...A B N= .  So in reality, the field strength Fµν  is a shorthand for 
i i

AB ABF Fµν µνλ= , where the “adjoint form” iF µν  consists of 2 1N −  individual 4×4 field strength 

tensors, and the “matrix form” ABFµν  is an N×N internal symmetry matrix of 4×4 field strength 

tensors.  The pure-gauge field Lagrangian density represented in the matrix form is now

( )1
gauge 2 Tr F F µν

µν= −L , with the doubling of the coefficient owing to the generator 

normalization, and so the energy is 31
2 TrE F F d xµν

µν= ∫∫∫ . 

 
Now, if we want to be as explicit as possible, then rather than using the trace (Tr) 

notation, we can use the matrix form ABFµν  and explicitly show the index contractions which 

yield this trace, namely, ( )1 1
2 2Tr AB BAF F F Fµν µν

µν µν= − = −L .  That is, the trace is formed first 

by taking an inner product AB BCF F µν
µν  which yields a new N×N internal symmetry matrix.  

Then we contact the A and C indexes to obtain AB BAF F µν
µν .  It is by this latter contraction that 

we obtain the trace, and more specifically, the inner product trace.  But mathematically, there is 
a second trace available from F F µν

µν , and that is the outer product trace which for any two 

matrices A and B is given by ( ) ( ) ( )BABA TrTrTr =⊗ .  So using explicit indexes, the outer 

product trace is AA BBF F µν
µν .  Thus, if we wish to be as general as possible, we should entertain 

the possibility of constructing the pure Yang-Mills gauge field Lagrangian density using some 
linear combination of both the inner product trace AB BAF F µν

µν  and the outer product trace 

AA BBF F µν
µν . 

 
With this general background in mind, we start with an ABFµν  which is carefully 

developed for the chromo-magnetic monopoles of Yang-Mills gauge theory, see [10.1] of [1] 
which is more deeply developed into [10.4] of [10].  This employs the gauge group SU(3)C of 
strong chromodynamic interactions with colors R, G, B, which means that the internal symmetry 
matrices have a 3x3 dimensionality, see, e.g., the matrix [9.20] of [10] which explicitly shows 
this.  We then represent a (duu) proton by assigning the R quark color to the down quark flavor 
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and the G and B quark colors to the up quark flavors via R ; G ; Bd u u→ → → , and a (udd) 
neutron by an analogous assignment R ; G ; Bu d d→ → → , all as laid out in sections 7 and 8 of 
[1] and the second half of section 10 in [10].  Finally, as laid out in sections 9, 11 and 12 of [1] 
we calculate an energy 31

2 TrE F F d xµν
µν= ∫∫∫  using the outer product trace 

31
2 AA BBE F F d xµν

µν= ∫∫∫  for each of the so-represented proton and neutron.  It turns out that 

these respective energies, showing both the matrix form and the scalar expression after the outer 
product trace is taken, see (12.4) and (12.5) of [1], are: 

 

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

0 0 0 0
4 41

Tr 0 0 0 0
2 2

0 0 0 0

2 Tr 2

d d

d u d u
P u u

u u

P P P AA P BB

m m
m m m m

E m m

m m

K K K K

π π

π π− −

   
    + +

= ⊗ =   
   
   
   

≡ ⊗ =

, (5.1) 

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

0 0 0 0
4 41

Tr 0 0 0 0
2 2

0 0 0 0

2 Tr 2

u u

u u d d
N d d

d d

N N N AA N BB

m m
m m m m

E m m

m m

K K K K

π π

π π− −

   
    + +

= ⊗ =   
   
   
   

≡ ⊗ =

. (5.2) 

 
In the final lines of each of the above, we denote the matrix appearing twice in (5.1) as P ABK   

and in (5.2) as N ABK .  We also point out that as elaborated in sections 2 through 4 of [6] that 

these matrices K can be used to restate the Koide mass relationships [14], which is why we 
choose the symbol “K” for these.  We further point out as elaborated in the rest of [6] that by 

supplementing the energy square roots um  and dm  with Fv  where vF=246.219651 GeV is 

the Fermi vev, one can make extended use of these “Koide matrices” to explain the proton and 
neutron masses themselves. 
 

If we then take the difference N PE E− between (5.2) and (5.1), the expression we get is 

 

( )
( )3

2

3

2
N P d u eE E m m m

π
− = − ≡ , (5.3) 

 
where we define (really, hypothesize) this to be equal to the electron rest mass.  It will be seen 
that this is just another way of writing (3.1).  So this is how (3.1) comes about.  Why do we make 
this hypothesis? 
 

Originally in [1], the author found (5.1) and (5.2), then calculated N PE E−  using the 

PDG data 0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−= , and found that .228
.190.476 MeVN PE E +

−− = , 

which nicely encompasses the electron rest mass .511 MeVem =  pretty much near the center of 
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the error bar.  This was the first plausible point of contact that was made from the theory that 
baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory to empirical data, 
particularly because a neutron decaying into a proton via Energyn p e ν+ −→ + + +  which can be 

recast as ...n p e+ −− = + , and a down quark decaying into an up quark via 

Energyd u e ν−→ + + +  which recasts as ...d u e−− = +  would, at least at a “linear” or “lowest 

order” level, support a relationship of the form N P d u eE E m m m− ∝ − ∝  in (5.3).  So given 

both this empirical concurrence and the ...n p e+ −− = +  and ...d u e−− = +  decay sensibilities, 
(5.3) was elevated into a hypothesized relationship with the electron rest mass, to be confirmed 
or contradicted based on additional empirical data.  Subsequent theoretical development in 
section 9 of [10] demonstrated that (5.1) through (5.3) are in fact all relationships taken in the 
zero-order limit of Yang-Mills gauge theory.  And subsequent empirical development which will 
be summarized momentarily appears to validate rather than refute (5.3), and to show that this 
zero-order limit appears to govern what is observed in nuclear binding and fusion events and the 
nuclear mass defects. 
 
  Now, we turn to the origins of (3.2), and for this, we must begin to discuss nuclear 
binding energies.  While (5.3) was the first plausible point of contact between theory and 
experiment uncovered by the author, it was (5.1) and (5.2) themselves which opened up fertile 
new vistas via some extremely compelling connections to nuclear binding energies.  Let us 
explain how this is developed. 
 
 If (5.1) and (5.2) represent some to-be-determined form of energy associated with the 
proton and neutron, then it is certainly a good idea to calculate these energies.  We may do so 
using 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  from PDG which is what the author first did in 

[12.4] and [12.5] of [1].  But rather than retread this same ground, let us use the much-more-
precise masses (3.3) and (3.4) which are be the correct quark masses if (3.1) and (3.2) are valid 
relationships, which is what we are testing out at present.  So, if we use (3.3) and (3.4) in each of 
(5.1) and (5.2), and then also apply 1 u = 931.494 061(21) MeV, we calculate to ten significant 
digits in AMU and seven significant digits in less-precise MeV [4] that: 
 

( )
3
2

0.001837 399 7 u 1.711 5
4

26 9 M
4

V
2

ed u d u
P

m m m m
E

π

+ +
= = = , (5.4) 

( )
3
2

0.002 387 693 9 u 2.224 1
4

22 7 M
4

V
2

eu u d d
N

m m m m
E

π

+ +
= = = . (5.5) 

 
 Now at first sight, these energies are a bit mysterious.  After all, MN = 939.565379 MeV 
and MP = 938.272046 MeV, so these energies are certainly not the proton and neutron masses 
themselves.  But we know that the proton and neutron contain three quarks each, that the current 
masses of the quarks contribute only slightly to the overall proton and neutron masses, and that 
the rest of the mass is generated through extensive interactions involving quarks and gluons.  So 
let us strip out all of these interactions and focus solely on the current quark masses, which when 
properly summed together, should represent something of a “zero order” value for the proton and 
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neutron masses.  Continuing to use the masses (3.3) and (3.4), the sums Σ  of these current quark 
masses, for the duu proton and udd neutron respectively, are:  
 

0 0 0 0

2 Tr 0 0 0 0

0.010 023 9911 u 9.337 2

Tr

0 0 0 0

88 2 MeV

d d

P u d u u P P P AB PBA

u u

m m

m m m m K K K K

m m

   
   

Σ = + = ⋅ = ⋅ =   
   
  



= =


  

, (5.6) 

0.0129129643 u 12.0283496

0 0 0 0

2 Tr 0 0 0 0 Tr

0 0 0

MeV

0

u u

N d u d d N N N AB N BA

d d

m m

m m m m K K K K

m m

   
   

Σ = + = ⋅ = ⋅ =   
   
  



=


  

=

. (5.7) 

 
We note that these sums 2 =TrP u d P Pm m K KΣ = + ⋅  and 2 TrN d u N Nm m K KΣ = + = ⋅  employ the 

inner product trace of the same Koide matrices for which the outer product trace was taken in 
(5.1) and (5.2). 
 
 These energy numbers deepen the mystery further, because one would expect the 
predicted energies (5.4) and (5.5) to at least be as much as the masses (5.6) and (5.7), and yet, 
they are substantially less.  That is, some of the mass we expect to see in (5.6) and (5.7) is 
“missing” from (5.4) and (5.5), in very much the same way that some of the mass one might 
expect to see by combining two nuclides if we naively add their separate masses together, goes 
missing in the mass defect and is released as fission energy.  So now the question becomes, how 
much mass has gone missing in (5.5)?  We can easily calculate this missing mass difference 

E∆ = Σ −  for each of the proton and neutron by subtracting (5.4) from (5.6) and (5.5) from (5.7) 
as was first done using the PDG data in [12.6] and [12.7] of [1], to obtain: 
 

( )
( )

3
2

3
2

0.008186 591
4 4

2
2

4 u 7.625 7

Tr 2 Tr

613 MeV

=

d u d u
P P P u d
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m m m m
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K K K K

π
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=
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( )
( )

3
2

3
2

0.010 525 270 4 u 9.804 226 8 Me
4 4

2
2

Tr 2 Tr

Vu u d d
N N N d u

N N N N

m m m m
E m m
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−

− ⊗

. (5.9) 

 
We see that these missing masses ∆  combine both inner and outer product traces of the 3x3 
Koide matrices in (5.1), (5.2), (5.6) and (5.7). 

 
We may then easily calculate that the average of these two missing masses 

( )1
2 8.714 9941MeVP N∆ + =∆ , and this number starts to reveal some very deep meaning.  For, 
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if we refer to the well-known empirical curve for the binding energy per nucleon which is 
reproduced below as Figure 2, and we keep in mind that most nuclides have roughly the same 
number of protons as neutrons but with larger proportion of neutrons over protons as the nuclides 
get heavier, we see that this number also is very close to the peak per-nucleon energy at about 
8.75 MeV per nucleon.  In particular, we know that the heaviest nuclides do give up 
approximately 8.75 MeV per nucleon in order to bind together, which very closely tracks the 
missing mass ( )1

2 8.714 9941MeVP N∆ + =∆ .   

 
It is this observation, first reported in section 12 of [1], which caused the author to 

initially suspect that these missing masses are very closely related to nuclear binding.  And to be 
clear, the author had no a priori suspicion that these missing masses might be related to nuclear 
binding.  Had the result of the foregoing calculation been ( )1

2 20 MeVP N =∆ + ∆ , or 

( )1
2 3 MeVP N =∆ + ∆ , or some other number, then this would not have implicated nuclear 

binding and mass defect as the source of this missing mass.  It is only because the missing mass 
was theoretically predicted to be ( )1

2 8.714 9941MeVP N∆ + =∆  and this is so close to the peak 

of the nuclear binding curve, that these missing masses were first suspected to be related to the 
mass defect.  So here, the matching of a theoretical prediction to empirical data gave birth to a 
new theoretical understanding that was unanticipated at the outset. 

 

 
Figure 2: Empirical Binding Energy per Nucleon 

 
 Once this connection is discerned, it becomes interesting to actually use (5.8) and (5.9) to 
examine the binding energies of nuclides right near the peak of Figure 1.  The two best examples 
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are 56Fe and 62Ni which have two of the highest per-nucleon binding energies of all the nuclides 
in nature.  The former has 26 protons plus 30 neutrons, with a median empirical binding energy 
of 492.253892 MeV [15], and the latter has 28 protons and 34 neutrons with an empirical 
binding energy of 545.2590 MeV (calculated from [16]).  So if we use (5.8) and (5.9) to 
ascertain how much mass is “missing” from each of these nuclides, we find that: 
 

( )56 492.396 598 5 MeV versus 492.253 892Fe 26 3  MeV obse ve0 r dP N∆ = ∆ + ∆ = , (5.10) 

( )62 546.865 028 4 MeV versus 545.259 0Ni 28  MeV observed34P N∆ = ∆ + ∆ = . (5.11) 

 
So for 56Fe the observed binding energy is 99.9710% of the theoretical missing mass ( )56Fe∆ , 

and for 62Ni this same percentage is 99.7063%.  And if one does a similar calculation for all of 
the other nuclides near 56Fe and 62Ni it turns out – importantly – that no nuclide reaches or 
exceeds 100%, and that the very highest percentage is the one just shown for 56Fe.  This means 
that (5.8) and (5.9) – in some manner that needs to be understood – are establishing the upper 
limit that we see on the nuclear binding curve in Figure 1.  And clearly, the results in (5.10) and 
(5.11) validate that (5.8) and (5.9) are revealing something very real and very important about 
nuclear binding, which gives further credence to the validity of the relationships (5.1) and (5.2) 
and thus the primary mass relationship (3.1) a.k.a. (5.3) with which they are integrally 
interconnected.. 
 
 From here, we shall avoid repetition and instead refer the reader to the primary reference 
[2] in which the author first deciphers and explores the meaning of these results in detail.  But 
the most important highlights which do need to be conveyed in the context of the present paper, 
specifically to explain the origins of the primary mass relationship (3.2) presently under 
consideration, are the following: 
 
1) Nuclear Binding and Quark Confinement: The energies (5.8) and (5.9), in physical 
reality, are “latent binding energies” of the proton and neutron respectively.  When a proton or a 
neutron (nucleon) is free, i.e., not bound to any other nucleon, then the entirety of this latent 
binding energy is used to confine quarks within the nucleon.  But when a proton or neutron is 
fused and bound into a nucleus with at least one other nuclide, some, but never all (which is why 
the numbers above are always less than 100%) of the latent binding energy in (5.8) / (5.9) is 
released as fusion energy, the mass of the fused nucleus as a whole becomes less than the sum of 
the masses of all its separate nucleons which underlies the mass defect, and this lost mass / 
energy goes into the binding energy fusing together the nucleus, all in a sort of energetic nuclear 
“see saw” between confinement and binding.  For 56Fe which at 99.9710% channels a higher 
percentage of its latent binding energies than any other nuclide into actual nuclear binding, there 
is still a small 0.0290% share of its latent binding energy amounting to 0.142706 MeV (less than 
1/3 the mass of a single electron) which does not get released and thereby going into nuclear 
binding, but remains behind to continue confining all of the quarks within the 56Fe nuclides.  
Because no nuclide ever uses up more than 100% of its latent binding energies for actual 
binding, but always reserves at least some energy for confinement, quarks are always confined.  
Quarks inside the nucleons of 56Fe are less-tightly confined than the quarks inside any other 
nuclide (which is a basis for understanding the “first EMC effect” [17]), but they do assuredly 
remain confined.  The peak in Figure 2 at 56Fe at which sits at 99.9710% of what it would take to 
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de-confine quarks, is one very direct way in which nature displays confinement.   Indeed, the fact 
that the observed binding energies in (5.10) and (5.11) and any other nuclides are always less 
than the total latent binding energies reveals the energetic explanation for why quarks always 
remain confined.  
 
2) Observed and Latent Nuclear Binding Energies: In general, for a nuclide with Z protons 
and N neutrons hence A Z N= +  nucleons, the latent binding energy which we denote by A

Z B  is 

calculated from (5.8) and (5.9) using: 
 
A
Z P NB Z N= ⋅ ∆ + ⋅ ∆ . (5.12) 

 
So for example, (5.10) and (5.11) may be represented as specific application of this formula for 

( )56 56
26 FeB = ∆  and ( )62 62

28 NiB = ∆ .  And the percentage ratios discussed earlier are 
56 56
26 0 26 99.9710%/B B =  and 62 62

28 0 28 99.7063%/B B = .  These latent binding energies A
Z B  thereby 

establish upper limits for actual, observed binding energies which we denote generally as 0
A
Z B  

with the 0 subscript.  But as 56Fe demonstrates, these limits are never reached or exceeded, that 
is, 0

A A
Z ZB B< , or alternatively, 0 10 %/ 0A A

Z ZB B< , always.  So this now leads us to ask how it is 

that we can explain the specific observed binding energies 0
A
Z B  for all the nuclides.  This is 

especially of interest for the lightest nuclides which have the lowest 0 /A A
Z ZB B ratios, and for 

which the observed binding energies to date have not yet been satisfactorily explained.  So, what 
do we now know to help us figure this out? 
 
3) The Binding and Fusion Energy “Toolkit”: We know that the latent binding energies 
A
Z P NB Z N= ⋅ ∆ + ⋅ ∆  employ linear combinations of (5.8) and (5.9), and these in turn involve 

inner and outer product traces of the matrices (5.1), (5.2), (5.6) and (5.7).  The elements of these 

matrix products in turn are very limited to only the energy numbers um , dm , u dm m , the 

foregoing divided by ( )
3
22π , and integer multiples of all these.   We make the conservative and 

very stringent assumption that every single observed nuclear binding energy 0
A
Z B  must be 

constructed out of some combination of the foregoing energy number “toolkit” and “structurally 
sensible” integer multiples thereof, which means that the observed 0

A
Z B  must all be functions of 

the 0Q =  up and down quark masses (3.3) and (3.4).  This is stringent because it gives us no 
room to adjust anything.  If we cannot construct the observed binding energies from these energy 
numbers with some fairly high degree of precision, which means as functions of the up and down 
quark masses and nothing more, then this approach is contradicted.  But if we can construct a fair 
number of observed binding energies in this way, then that would lend solid empirical support to 
this approach.  We know that the latent binding energies A

Z P NB Z N= ⋅ ∆ + ⋅ ∆  comes readily 

packaged, so for any given nuclide, we should consider both adding to and subtracting from a 
pertinent A

Z B , i.e., we should ask how much its binding energy either exceeds or falls below 

some AZ B .  We should also sensibly include in our “toolkit” scalar traces of the Koide matrices, 
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namely, Tr 2P d uK m m= +  and Tr 2N u dK m m= +  multiplied by um  or dm .   Finally, 

to extend this approach, we should consider matching the energy numbers not only to binding 
energies, but also to the energies released during various fusion or fission and other decay 
reactions.  From here, with toolkit assembled, the task of characterizing individual observed 
binding energies 0

A
Z B  involves elbow grease, a good spreadsheet or computer program, and 

educated trial and error.  In this venture, one is using empirical data in combination with the 
foregoing toolkit to try to discern systematic but hidden theoretical patterns in the nuclear 
binding energies – in broad scope, seeking to “decode” the nuclear “genome.”  
 
4) Hydrogen-2: The easiest place to start is with the 2H deuteron, consisting of one proton 
and one neutron.  In AMU, the observed binding energy is 2

1 0 0 002 388170100 uB .= . We then 

refer to our energy number “toolkit” um , dm , u dm m , the foregoing divided by ( )
3
22π , and 

integer multiples of these.  But we need not search very far.  From (3.3) the mass of the up quark 
is 0 002 387 339 3 uum .= .  The difference is 21

7
0 8.308 10 uuB m −− ×= , which is to say, the 

accuracy is to better eight parts per ten million AMU.  It should be pointed out that in [1] the 
author originally hypothesized that the deuteron binding energy is exactly the same as the up 
quark masse due to how close they in fact appeared to be.  That is, the author originally 
employed 21 0 uB m=  rather than (3.2) as a primary mass relationship in combination with (3.1).  

Then, on this basis, over the course of the development in sections 1 through 9 of [2] the author 
was able for the first time to derive the primary mass relationship (3.2) with eight parts per ten 
million AMU accuracy.  Once this (3.2) had been derived, for the reasons elaborated at length in 
section 10 of [2], the author shifted hypotheses and advanced (3.2) to a primary, exact mass 
relationship while withdrawing 21 0 uB m= , so that the sub-parts-per-million accuracy error was 

shifted from (3.2) to 21 0B .  It must also be pointed out that this error is outside of experimental 

error margins because 2
1 0B  is known with greater than ten-digit accuracy, and so it still warrants 

understanding as will be discussed later in this paper.  
 
5) Helium-3 and Helium-4: From there we attempt to explain some other light nuclide 
binding energies in like fashion based on the foregoing toolkit, particularly hydrogen and helium 
isotopes.  For the highly stable alpha particle – the 4He nucleus – it was found through trial and 
error that the observed binding energy 4

2 0 0 030 376 586 5 uB .=  is less than the latent binding 

energy 4
2 0.037 465 212 u2 2 2P NB = ⋅ ∆ + ⋅ ∆ =  by approximately 2 u dm m .  So we then 

calculate 4
2 02 2 2 0.030 373 002 0 uP N u dm m B⋅ ∆ + ⋅ ∆ − = ≈ , to find that this differs from the 

observed alpha binding energy by under four parts per million AMU.  The integer factor 2 used 

with u dm m  is “structurally sensible” because the alpha particle has 2 protons and 2 neutrons, 

i.e., 2 neutron / proton pairs.  And this overall expression for 42 B  is structurally sensible because 

just like the alpha particle itself, it is completely symmetric under both P N↔  and u d↔  
interchange.  This is first developed in detail in section 5 of [2] and the numerical results are 
recalibrated in section 10 of [2] after (3.2) is used to replace 21 0 uB m=  as a primary mass 

relationship. 
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 For the 3He nucleus (helion) with observed binding energy 3

2 0 0.008 285 602 8 uB =  we 

calculate 3
2 0Tr 2 0.008 320 783 9u P u u dm K m m m B= + = ≈  by employing the trace of the Koide 

proton matrix Tr 2P d uK m m= +  from our toolkit.  Having 2d um m+  involved here is 

“structurally sensible” because 3He has one neutron (one extra down quark) and two protons 
(two extra up quarks).  This differs from the empirical data by under four parts per hundred 
thousand AMU after recalibration in section 10 of [2], and was first developed in detail in section 
6 of [2]. 
  
6) Hydrogen-3 and the Neutron minus Proton Mass Difference: It was in the course of 
attempting to obtain a binding energy for the 3H triton that the author finally discovered the mass 
relationship (3.2) which was then advanced to a primary exact relationship in section 10 of [2].  

While 2
1 0 uB m≈ , 4

2 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ −  and 3
2 0 2 u u dB m m m≈ +  for 2H, 4He and 3He 

respectively could be ferretted out relatively straightforwardly using binding energies, latent 
binding energies (5.12), and the toolkit from point 3, finding 31 0B  for 3H proved to me impossible 

working with binding energies alone.  So at that point in time, as detailed in the appendix of [2], 
we begin to consider certain nuclear fusion reactions to see if the energies released in these 
reactions might provide a close empirical connection to the point 3 toolkit.  And we also begin to 
make use of the general mass defect relationship 
 

0 0
A A
Z P N ZB Z M N M M= ⋅ + ⋅ −  (5.13) 

 
through which one can related the observed binding energy 0

A
Z B  to the observed nuclear mass 

(weight) 0
A
Z M  for any nuclide with Z protons, N neutrons and A Z M= +  nucleons.  (Note: 

1
1PM M=  and 1

0NM M= .) 

 
First, we consider the fusion Energy3

1
2
1

1
1 +++→+ + νeHHH of a proton and a deuteron 

into a triton and ask: how much energy is released?  Empirically, this energy is observed to 
1 2 3
1 1 1Energy 0.004 780 386 2 ueM M M m= + − − = .  Dipping into the toolkit, we find a close 

connection using 0.004 774 6 8 6 u2 7um =  which differs from the observed fusion energy by 

5.7076×10-6 u, i.e., just under six parts per million AMU.  And the factor of 2 makes some 
structural sense because we are fusing two nuclides.  So we make the close association 

( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈ .  After some calculations using (5.13) and leading to [A9] in 

[2] we obtain the expression 3
1 0 3N P u eB M M m m≈ − + +  for the 3H binding energy, which 

requires us to find the neutron minus proton mass difference N PM M−  which is the primary 

relationship (3.2). 
 

To do this, we do a second fusion study, this time of fusion 
Energy2

1
1
1

1
1 +++→+ + νeHHH  of two protons into a deuteron, and again ask: how much energy 

is released?  The observed empirical energy is 2
1Energy 2 0.000 451141 0 uP eM M m= − − = .  
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We again return to trial and error with the toolkit, this time dipping into the ( )
3
22π  divisor to find 

that ( )
3
22 2 0.000 450 4241 uµ dm m / π = .  This differs from the empirical fusion energy by 

7.169×10-7 u, and so has an accuracy of better than one part per million AMU!  So we make the 

close association ( ) ( )
3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈ .  Thereafter, we arrive in 

[A15] of [2] at ( ) ( ) ( )
3 3
2 22 / 2 3 2 3 / 2N P u e µ d u d µ d uM M m m m m π m m m m m π− = − − = − + − , 

which is the primary mass relationship (3.2).  With this, we have completed the explanation of 
how this relationship (3.2) is obtained. 

 
Of course, when (3.2) was first obtained in [A15] of [2], this was as an intermediate step 

that was necessitated to reduce 3
1 0 3N P u eB M M m m≈ − + +  to obtain the binding energy for the 

3H triton, which has the empirical value 3
1 0 0.009105 585 4 uB = .  So we then completed the 

calculations in the appendix of [2] using all of these results to arrive in [A17] at the approximate 

expression ( )
3
2 3

1 04 2 / 2 0.009 099 0471 uu µ dm m m π B− = ≈  for the triton bending energy, which 

differs from the observed value by 6.5383×10-6 u,  just under seven parts per million AMU.   
 

7) Recalibration of Mass Relationships: As just discussed, the primary mass relationship 
(3.2) was first uncovered as a byproduct in the course of pursuing the triton binding energy.  But 
based on the initial hypothesis in place at the time that 21 0 uB m= , this relationship (3.2) itself 

predicted a neutron minus proton mass difference which was off by a few parts per ten million 
AMU.  Then, for the reasons detailed in section 10 of [2] the author withdrew 21 0 uB m=  as a 

primary relationship and instead hypothesized (3.2) to be a primary, exact relationship among the 
electron, proton and neutron masses.  It is with this hypothesis that (3.2) joined (3.1) as a 
“primary mass relationship” then then was used in accordance with the EPN-0 quark mass 
definition to deduce very precise quark masses (3.3) and (3.4) which have been used in the 
development here ever since, and all mass relationships previously developed were recalibrated 
to reflect this revised hypothesis. 
 
6. Is there Clear Secondary Empirical Support for the Deduced Q = 0 Up 
and Down Current Quark Masses? 
 
 Having shown how the primary mass relationships (3.1) and (3.2) are obtained, we now 
return to the second of the three questions posed in section 3, namely, whether these primary 
mass relationships (3.1) and (3.2) and the very precise 0Q =  up and down current quark masses 
(3.3) and (3.4) deduced therefrom can be supported by other “secondary relationships” rooted in 
nuclear data, or whether there are contradictions to be found. 
 

When discussing in general whether a theory is “valid” or has “support,” one must keep 
in mind that for scientific work, one can never truly “validate” a theory.  One can simply show 
that at multiple places where the theory might be open to contradiction, no contradiction is 
found.  This takes place at two levels: the empirical level, and the theoretical level. 
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At the empirical level, the question is whether efforts to make contact with empirical data 
are contradicted or not contradicted: do the experiments rule out the theory, or do they fail to rule 
out the theory.  If a sufficient number of efforts are made to contradict and no contradictions are 
in fact found with the experimental data, then the weight of those “failures to contradict” start to 
translate into “empirical support” for the theory.  But there is no objective, scientific 
measurement as to when there are enough failures to contradict so as to constitute theoretical 
validation.  That is a subjective judgment which must first be made by individual scientists and 
then, eventually, by the scientific community as a whole.   

 
At the theoretical level, the question is whether a proposed theory is consistent with, i.e., 

not contradictory to, other settled theories and theoretical elements which have advanced to the 
point of having gained wide acceptance in the scientific community based on multiple failures to 
contradict those settled theories.  There are other corollary questions related to this: is the theory 
economical, which in a conservative view of science might be reframed as whether the theory 
requires brand new notions to be injected into the theoretical discourse of the community, or 
whether the theory can be rested solely on novel combinations of well-established and well-
settled theories and theoretical elements to uniquely and unambiguously deduce new results and 
new explanations for previously-unexplained observational data.  From a conservative scientific 
stance, the latter (combination of settled science) is preferable, and the former (brand new 
notions) is not ruled out but should be used as a last resort when there is no apparent way to 
succeed by restricting oneself to combining known elements in unknown ways.   

 
In this section, we shall discuss empirical support, which is the second of the three 

questions posed in section 3.  In the next section we shall discuss theoretical support, which is 
the third and final of the three questions posed in section 3 
 
 To a very large degree, section 5 has already developed very substantial empirical 
support that the validity (3.3) and (3.4) are correct quark masses, and therefore (3.1) and (3.2) are 
correct relationships.  Now, we shall review this empirical support, and introduce additional 
empirical support. 
 
 Thus far, we started out by hypothesizing (3.1) and (3.2) to be valid, exact, Q-invariant 
relationships, and thereby hypothesizing (3.3) and (3.4) to be valid, very precise up and down 

0Q =  quark masses.  Based on this, we have thus far been able to deduce the following non-
contradictory, supporting empirical results: 
 
1) Hyrdrogen-2 and -3, Helium-3 and -4 Binding Energies: Secondary relationships for the 
2H, 3H, 3He and 4He (1s shell) nuclide binding energies strictly terms of um  and dm  with very 

close matches to parts per 105, 106 or even 107 AMU.  Respectively, these secondary 

relationships are: 2
1 0 uB m≈  (section 5, point 4); ( )

3
23

1 0 4 2 / 2u µ dB m m m π≈ −  (section 5, point 6); 
3
2 0 2 u u dB m m m≈ +  ); (section 5, point 6); and in view of (5.8) and (5.9),
4
2 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ − (section 5, point 6). 
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2) Deuteron and Triton Fusion Energies: Interrelated to the point 1 secondary relationships 
and the primary relationship (3.2), the secondary relationships 

( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈  for the fusion energy released when a fusing proton and a 

deuteron into a triton, and ( ) ( )
3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈  for the fusion energy 

released when fusing two protons into a deuteron (section 5, point 6). 
 
3) The Nuclear Binding Peak near 8.75 MeV: The relationships (5.8) and (5.9) P∆  and N∆  

which represent “missing mass,” and which have a value of ( )1
2 8.714 9941MeVP N∆ + =∆  

which is right at the peak of the empirical nuclear binding curve in Figure 2. 
 
4) Iron-56 and other Tightly-Bound Nuclides: Based on (5.8) and (5.9), the relationship 

( )56Fe 26 3 492.396 598 eV0 5 MP N∆ = ∆ + ∆ =  in (5.10) which is extremely close to the 

empirical 56
26 0 492.253 892 MeVB = , such that 56 56

26 0 26 99.9710%/B B = .  This, and other 

relationships such as (5.11) which are deduced via (5.12), provide the basis for recognizing that 

P∆  and N∆  are latent energies available to be used for binding, which confine quarks in free 

nucleons, but which are partially released as fusion energies for nuclear binding, in a percentage 
that varies for each type of nuclide but never exceeds 100% and is greatest for 56Fe than for any 
other nuclide.  And this enables us to understand quark confinement on an energetic basis and 
explain the first EMC effect [17] whereby quarks inside bound nuclei are observed to be less-
combined than those in free nucleons. 
 
 All of the foregoing provide secondary empirical validation to the view that (3.1) and 
(3.2) are empirically-valid relationships, and that (3.3) and (3.4) are therefore empirically-valid 
quarks masses because they can be used to closely and correctly characterize a broad range of 
other empirical data.  But there are further supporting empirical results as well: 
 
5) Solar Fusion: By combining the 2H, 3H, 3He and 4He binding results in point 1 above with 

( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈  and ( ) ( )

3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈  for the 

fusion events in point 2 above, it is possible as detailed in section 9 of [2] to accurately express 
the 26.73 MeV energy observed to be released during a single solar fusion event by the 
relationship [9.8] of [2]: 
 

( )

( )
3
2

1 4
1 2Energy 4 2 (12.79 ) 2 (5.52 ) 2 (.42 ) 4 ( ) 2

2 22 12
4 6 2 26 73

2

d u u d
u d u d

H e He MeV MeV MeV e

m m m m
m m m m .  MeV

π

γ γ γ γ ν−⋅ + → + + + + +

− −
= + − + =

. (6.1) 

  
Like the other binding and fusion results, this is also expressed wholly and exclusively in terms 
of the same two parameters: the up quark mass (3.3) and the down quark mass (3.4). 
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6) Stable Neutron-Rich Nuclides: The fact that the latent binding energy of the neutron in 
(5.9) is greater than that of the proton in (5.8) by a factor of 1.284 295 230 4/N P∆ ∆ =  teaches 

that neutrons inherently carry 28.42% more latent binding energy than does a proton.  This 
immediately explains the clear empirical evidence that for all nuclei heavier than helium, the 
stable isotopes always have either equal numbers of protons and neutrons, or are neutron-rich.  If 
one has a given nucleus, and seeks to fuse on an extra proton or neutron, it is clear that the 
nucleon which brings in more energy available for nuclear binding will have an easier time 
becoming and staying bound.    
 
7) Lithium-6 and -7 and Beryllium-7 and -8: Thus far we have only examined the 2H, 3H, 
3He and 4He binding energies.  But there is further support available from some heavier nuclides 
as well.  To date, the author has characterized eleven additional nuclides 6Li, 7Li, 7Be, 8Be, 10B, 
9Be, 10Be, 11B, 11C, 12C and 14N with equally-high precision, exclusively as a function of the up 
and down quark masses.  All of these derivations are detailed at length in [5], so we shall simply 
summarize them here. 
 

The detailed derivations for 6Li, 7Li, 7Be, 8Be, which are 2s shell nuclides, are contained 
in section 13 of [5] and are exceptionally revealing in terms of the requirement that the integer 

multiples of the um , dm , u dm m  and these divided by ( )
3
22π  must be “structurally sensible.”  

We have already applied this in points 5 and 6 of section 5 for the hydrogen and helium 
derivations, but when applied to Li and Be, this requirement provides deep support for the 
approach being laid out here. 

 
The respective binding energies for 6Li, 7Li, 7Be, 8Be are found in [13.21] and [13.12] of 

[5] to be: 
 

( ) ( )
3
26

3 0 7 6 2 10 10 0.034 336 4279 u2 2 u d u d u d u dB m m m m m m m m π≈ + − + − − − = . (6.2) 

( ) ( )
3
27

3 0 0.042105 716 08 6 2 11 u2 2  2u d u d u d u dB m m m m m m m m π≈ + − + + − = . (6.3) 

( ) ( )
3
27

4 0 7 6 2 10 8 0.040 356 362 0 u9 2u d u d u d u dB m m m m m m m m π≈ + − + − + − = . (6.4) 

( )1.58
4 0 0.060 633 250 94 4 2 3 2  2 u/P N u d u dB E E m m m m π≈ ⋅ ∆ + ⋅ ∆ − − = . (6.5) 

 
The respective empirical values out to seven digits are 6

3 0 0.034 347 1 uB =  (difference of 
51.07 10  u−− × ); 7

3 0 0.042130 3 uB =  (difference of 52.45 10  u−− × );  7
4 0 0.040 3651 uB =

(difference of 68.74 10  u−− × ), and 8
4 0 0.060 6 8u54B = (difference of 52.16 10 u−− × ).  So as 

with H and He, these all have accuracy to parts in 105 or 106 u. 
 
 Now, while the existence of the coefficients 6, 7 and 8 multiplying the quark masses 
provides some “structural sensibility” for nuclides with 6, 7 or 8 nucleons, the deep and striking 
structural sense emerges from the fusion relationships which were used in section 13 of [5]  to 
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establish (6.2) through (6.5) above.  Specifically, to arrive at (6.2) for 6Li we considered the 
fusion reaction 4 6

2 32 EnergyHe p Li e ν++ → + + +  for which the empirical energy to seven digits 

is 0.002 033 5 u, and after using the toolkit and “structurally-sensible” integer multiples, we 
found in [13.3] of [5] that: 
 

( ) ( )1.54 6
2 3Energy 2 Energy 9 / 0.002 026 4 2 uu dHe p Li e m mν π++ → + + + ≈ = , (6.5) 

 
which is a difference of 67.1 10 u−− × , with the coefficient 9.  And to arrive at (6.3) for 7Li we 

developed the β +  decay reaction 7 7
4 3 EnergyBe e Li ν+ → + +  for which the empirical energy is 

0.000 925 3 u.  Using the toolkit and “structurally-sensible” integer multiples, we found in 
[13.9] of [5] that: 
 

( ) ( )1.57 7
4 3Energy Energy 6 / 2 0.000 909 5 uuBe e Li mν π+ → + + ≈ = , (6.6) 

 
which differs by 51.58 10 u−− × , with a coefficient of 6.  And to arrive at (6.4) for 7Be we worked 

with the reaction 6 7
3 4 EnergyLi p Be+ → +  which has an empirical energy of 0.006 018 0 u.  

Here, we found in [13.6] of [5] that: 
 

( ) ( )1.56 7
3 4Energy Energy 0.006 018 / 2 19 9 udLi p Be m π+ → + ≈ = , (6.7) 

 
differing by 61.9 10 u−× , with a coefficient of 18.  It is these three coefficients, 9, 6 and 18 which 
not only yield very close results to parts per 105 or 106, but provide structural sensibility as well. 
 
 When we build the 6Li nucleus onto an alpha particle in (6.5), we are creating a nucleus 
with 9 up quarks and 9 down quarks, i.e., with 9 up / down quark pairs.  And what is the toolkit 

number that gets us a to 6Li?  ( )1.5
9 / 2u dm m π !  How better to formally state that there are 9 up 

/ down quark pairs than with ( )1.5
9 / 2u dm m π , and to state that both the beginning and end-

products 4He and 6Li are absolutely symmetric under P N↔  and u d↔  interchange.  In (6.6) 
we have the isotopic β +  decay from unstable proton-rich 7Be to stable neutron-rich 7Li for 

which the toolkit gives us ( )1.5
6 / 2um π .   (Keep in mind point 6 where we explained based on 

latent binding energies why nature favors extra neutrons over extra protons for anything heavier 
than He.)  In this reaction a proton is being traded for a neutron, but the unchanging nucleus 
during thus reaction is the underlying stable 6Li nucleus with is an isotope of 7Li and an isotone 
of 7Be.  The invariant structural piece of the nucleus which does not change, is the underlying 6Li 
with 6 nucleons.  So what is the coefficient here?  Why, it is 6!  In (6.7) we are adding a proton 

to 6Li, and the toolkit yields ( )1.5
18 / 2dm π .  Why 18?  The nucleus at the root of this fusion 

event is 6Li, which contains 18 quarks!  It is also interesting to observe that thee three of the 

main toolbox elements u dm m , um  and dm  are used in these decays ( )1.5
9 / 2u dm m π , 
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( )1.5
6 / 2um π  and ( )1.5

18 / 2dm π , that the 6Li nucleus common to all three reactions appears to 

drive these coefficients. 
 
 All of this suggests that when any nuclear transition occurs and some energy is being 
released, there is definitive set of energy “dosages” which are released or otherwise used in the 
process, and which are allocated discretely to each of the quarks or quark pairs or nucleons, etc.  

So for 4 6
2 32 ...He p Li+ → +  with ( )1.5

9 / 2u dm m π , each of the nine quark pairs gives up an 

single energy dose ( )1.5
/ 2u dm m π  to be able to establish the 6Li with the start of a new shell 

overlaid on the alpha nucleus, that is, to “entice” an extra proton and neutron to join the alpha 

core.  For 7 7
4 3 ...Be e Li+ → +  with ( )1.5

6 / 2um π  each of the six nucleons – three protons and 

three neutrons – in the 6Li core gives up a single energy dose ( )1.5
/ 2um π  to the β +  decay.  And 

for 6 7
3 4 ...Li p Be+ → +  with ( )1.5

18 / 2dm π , every single quark in the 6Li core needs to give up a 

single ( )1.5
/ 2dm π  energy dose to “entice” the proton into the core.  This then tells us 

retrospectively to point 2, that to create a deuteron which is symmetric under P N↔  and 

u d↔  interchange, via ( ) ( )
3
22

1Energy ... 2 2µ dp p H m m / π+ → + ≈  each proton has to 

contribute a ( )
3
22µ dm m / π  dose of energy which dose is similarly symmetric.  And to create a 

triton via ( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈  each of the proton and the deuteron must 

contribute an energy does valued at um .  This provides a deeper picture of what it means to say 

that the “toolbox” elements need to be used with coefficients which are “structurally sensible,” 
and we come to understand that when we observe some fusion or fission energy released during 
some reaction, that this energy originates from a collection of “doses” of the toolbox energies in 
relations to the structural elements of the involved nuclei.   
 
 We also see that the method of fitting the toolkit to observed fusion or β  decay energies 
is extremely important in building up larger nuclides.  In section 13 of [5], we started with the 
4He nucleus and built that into 6Li which is diagonally-adjacent upper left to lower right in the 
nuclide table, per (6.5).  Then we added a proton as in (6.7) and built this into its isotone 7Be.  
Then we diagonally beta-decayed this upper right to lower left into 7Li as in (6.6).  Once lighter 
nuclides are so-characterized, we have the ability to “weave” over from one nuclide to 
horizontally or vertically-adjacent nuclides by examining their decay energies, and then convert 
over to binding energies via (5.13). 
 

Further, we see from the 4He binding energy  42 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ −  and from 

the 8Be binding energy ( )1.58
4 0 4 4 2 32 / 2P N u d u dB E E m m m m π≈ ⋅ ∆ + ⋅ ∆ − −  that the 

evenZ N= =  nuclides appear to form something of a nuclear “backbone” which are N P↔  
and u d↔  invariant, and that their binding energies are perhaps best uncovered by first using 
(5.12) ascertain their latent binding energies, then using the toolkit to see how much of this latent 
energy is retained for confinement, and throughout being guided by the N P↔  and u d↔  
symmetry of these nuclides.   
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So the basic approach to “decoding the nuclear genome” is to establish the diagonal 

evenZ N= =  backbones via the latent binding energy formula and determination of how much 
latent energy goes unused (5.12), then “weave” our way over to nearby nuclides while making 
use of the various emergent coefficients to provide clues as the nuclear substructure and which 
elements within the nucleus are emitting what energy dosages. 
 
8) Stability of Helium-4 over Beryllium-8: By now having close fits for both 84 0B  and 4

2 0B  

with the ratio 8 4
4 0 2 0 1.99/ 6 052 2B B =  based on (6.5) and point 5 of section 5, we implicitly 

explain that why 8Be is unstable and always decays rapidly into two 4He nuclei.  This is another 
important empirical feature of nuclear physics which now supports the approach here. 
 
9) Boron-10: Further empirical validation is obtained through characterizing the 10B, 9Be, 
10Be, 11B, 11C, 12C and 14N nuclides as the authors has previously done in section 14 of [5].  We 
shall not repeat those derivations here because they are available at the original source [5].  But 
the patterns which stated to emerge for 6Li, 7Li, 7Be, 8Be do appear in some places for these 
even-heavier nuclides.  An excellent example of this is the 8 10

4 52 EnergyBe p B e ν++ → + + +  

reaction, which is analogous to 4 6
2 32 EnergyHe p Li e ν++ → + + +  as summarized in (6.5).  The 

empirically-released energy in this reaction is 0.006 9210 u.  And as found in [14.3] of [5], 
symmetric under u d↔  interchange as expected for any Z N=  nuclides, we obtain: 
 

( ) ( )1.58 10
4 5Energy 2 Energy 15 / 2 0.006 923 4 uu d u dBe p B e m m m mν π++ → + + + = + = , (6.8) 

 
which differs from the empirical energy by 62.4 10 u−× .  What is extremely striking is that the 

creation of 6
3Li  with 9 up / down quark pairs from 4

2 He contained a ( )1.5
9 / 2u dm m π  term 

shown in (6.5), and the creation of 10
5B  with 15 up / down quark pairs from 8

4 Be contains a 

exactly the same term, but now  ( )1.5
15 / 2u dm m π .  This cannot be mere coincidence.  This 

reveals a very definite and meaningful data pattern.  As with 4 6
2 32 ...He p Li+ → + , each quark 

pair in the 8 10
4 52 ...Be p B+ → +  contributes a single ( )1.5

/ 2u dm m π  energy dose, except now 

there are more quark pairs – 15 rather than 9 – to make such a contribution.  But the new feature 

in (14.3) is that there is also a single overall u dm m  dose.  Because structural sensibility is 

important in discerning which possible relationships are true signal and which are mere noise, we 
need to closely look at the structure of the nuclides involved.  Earlier, 63Li  opened up a new 2s 

shell for a protons and a neutrons alike, but in 2s, the orbital angular momentum is l=0 as it is for 
1s.  Now, however, 10

5B  is opening up a new 2p shell for a proton and a neutron, and these shells 

have l=1.   So to create this shell, so as to sustain both a proton (extra up quark) and a neutron 

(extra down quark) in an l=1 state, we need some additional energy.  The u dm m  term appears 

to tell us that the l=1 proton contributes the um  and the l=1 neutron contributes the dm  to this 
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u dm m  energy does an the price for entry and maintenance in an orbital state.  Again: decoding 

the nuclear genome! 
 
10) Carbon-12: The 12C nuclide is seat of biological life and the chosen standard of nuclear 
weight measurement with an isotopic mass exactly equal to 12 u by definition, also is of keen 
interest in terms of confirming certain patterns already seen for the 4He and 8Be which are the 
first three nuclides with evenZ N= = .  This sits on the nuclear backbone, and so we go straight 
to (5.12) with 6Z N= =  to obtain the latent binding energy and then see how much is subtracted 
away, i.e., held in reserve to confine quarks rather than bind the nucleus.  The empirical binding 
energy 12

6 0 0.098 939 8 B u= .  What we discern in [14.30] of [5] is that: 

 

( ) ( ) ( )1.512
6 0 6 6 1 0.098 92  u2 0/ 8 7P N u d u dB E E m m m m π≈ ⋅∆ + ⋅∆ − + − + = . (6.9) 

 
The empirical difference is 53.10508 10  u−− × .  Thus far the u d↔ -symmetric energy number 

we have used is u dm m , yet the above makes clear that u dm m+  is a good tool to add to the 

toolkit (by corollary it is already there because um  and dm  are already there, but it helps to be 

cognizant of the equally-weighted sum u dm m+  especially for u d↔ -symmetric nuclides).  The 

coefficient 12 clearly makes structural sense: there are after all, 12 nucleons in 12C, so each 

nucleon is responsible for one of the ( ) ( )1.5
/ 2u dm m π+  energy doses.  But like 10B, 12C has 

nucleons in the 2p shell must sustain yet another proton and neutron in an l=1 orbital state.  So in 

the same way that u dm m  sustained the first proton / neutron pair in an orbital state in (6.8), 

u dm m+  sustains the second proton / neutron pair in the l=1 orbital.  This also establishes a very 

definite and meaningful data pattern.  For the remaining 9Be, 10Be, 11B, 11C and 14N nuclides 
which the authors has also characterized, we will take no further space here, but refer the reader 
to section 14 of [5]. 
 
11) The Proton and Neutron and Constituent Quark Masses: If the foregoing are not yet 
overwhelmingly convincing evidence that the primary relationships (3.1) and (3.2) are correct, 
that (3.3) and (3.4) are indeed the 0Q =  masses of the up and down quarks, and that the quark 
masses can systematically be used to decode the nuclear genome in a way that has never been 
done before, then the crowning empirical validation comes through using an extension of the 
foregoing approaches to explain the observed proton and neutron masses MN = 939.565379 MeV 
and MP = 938.272046 MeV themselves, in relation to these very same quark masses, within all 
experimental errors!  This was the central result in [6], which will be summarized here to 
establish overwhelming empirical support beyond any reasonable doubt.  The next section will 
then turn to the underlying theory, that baryons are the chromo-magnetic monopoles of Yang-
Mills gauge theory. 
 
 It will be understood from basic algebra that if we know the difference A-B between any 
two numbers A and B and also know their sum A+B, then we can then deduce these two separate 
numbers.  Because we already know the neutron minus proton mass difference N PM M−  in 
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relation to the up and down quark masses from the primary relationship (3.2), we are one step 
away from knowing the proton and neutron masses themselves if we can also determine 

N PM M+ .  So the objective is to deduce the sum of these two masses.  Once that is the 

objective, there is an important symmetry benefit we have already seen with the Z N=  nuclides: 
we expect that N PM M+  which represents baryons with a combined total of 3 up and three down 

quarks, must be symmetric under u d↔  interchange.  This greatly restricts the toolkit elements 
we may use to either u dm m  products or u dm m+  sums. 

 
 The problem we have, however, is that the proton and neutron masses are at least two 
orders of magnitude larger than mu = 2.223 792 40 MeV and md = 4.906 470 34 MeV, so the 
“sensible integer multiples” approach does not help us here.  But we know from electroweak 
theory that the Fermi vev vF=246.219651 GeV is used to set the scale of certain observed 
masses, notably the masses for the W and Z bosons, and we might expect on general principles 
that this vev will also turn up in the proton and neutron masses.  So knowing that we are going to 

need u d↔  symmetric constructs such as u dm m to obtain N PM M+ , and entertaining the 

possibility of employing Fν  as an additional energy square root to supplementum  and dm  

which we are already using, we perform an exploratory calculation in [3.8] of [18] to find that 

the construct 901.835259 MeVu dv m m⋅ =  lands within about 3% of the actual proton and 

neutron masses.  To use a golf analogy, this places the ball on the green; now we need to figure 
out how to hit it into the cup. 
 
 The next step was to employ ( ) ( )2 1 1 1 2 2

3 3 3 3 3 3diag diag 0, , , , 1, , ,F F Fv Q vΦ = = − − − −  which 

is a Fermi vacuum in the adjoint presentation for elementary fermions which were grouped into 
an ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  octet in the fundamental representation of an SU(8) Grand Unified 

Theory (GUT) that the author had used to break the electroweak symmetry and which naturally 
explained the existence of three fermion generations and CKM mixing and so answered Rabi’s 
long ago quip about the muon, “who ordered that?”  Plainly put: the electric charges Q of the up 

and down quarks needed to enter 901.835259 MeVu dv m m⋅ =  in the form of Fv Q. 

 
 So supplementing the Koide matrices K which were first discussed at (5.1) and (5.2) 
above with the quark electric charge magnitudes via FΦ , the author in [5.8] of [6] constructed 

and then calculated the following inner product trace between a first Koide-type  matrix with the 
duu (proton) charges and mass, and a second matrix the udd (neutron) charges and masses: 
 

1 24 4
3 3

22 1 244 4
3 3 9

2 14 4
3 3

1857.

0 0 0 0

Tr 0 0 0

570635 MeV

0 3

0 0 0 0

F d F u

F u F d F u d

F u F d

v m v m

v m v m v m m

v m v m

   
   
   ⋅ = ⋅
   
   
   

=

 (6.10) 
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which was understood to apply to all but the current quark mass sum 3 3u dm m+  associated with 

N PM M+ .  Upon adding this sum to (6.10), it was found in [5.10] of [6] that: 

 

( )224
9 1878.961415 MeV3N P F u d u dM M v m m m m+ ≈ + + = . (6.11) 

 
which differs from the observed 1877.837 425 MeVN PM M+ =  by a scant 0.0599%! 

 
 The balance section 6 of [6] was devoted to closing this gap.  In sum, it was found in 
[6.6] of [6] (see also [5.14]) that the exact N PM M+  includes a mixing angle 1θ  and a phase δ  

parameters which also need to be in (6.11) growing out of the fact that the up and down quarks 
have oppositely signed electric charges, and that the complete expression is: 
 

( ) ( )( )224
193 exp cosN P F u d u dM M v m m i m mδ θ+ = + + . (6.12) 

 
It was then deduced in [6.28] from the empirical N PM M+  that 1 0.947454co 2s 124θ =  and in 

[6.30] that 0δ =  by mathematical identity.  The latter result tells us that there are no CP-violating 
effects associated with neutron and proton, which is validated by empirical data that the mass of the 
antiproton is equal to that of the proton, and similarly for the neutron, see, e.g., [19], [20], while the 
former result boils down and bundles up the problem of explaining the proton and neutron masses within 
all experimental errors, to the problem of explaining the value of the “nucleon fitting angle” 

1 0.947454co 2s 124θ =  within all experimental errors. 

 
 Because this 1θ  and the phase δ  emerged from matrices with were mathematically the 

same as the CKM mixing matrices, it made sense to see if 1 0.947454co 2s 124θ =  could be 

related in some way to the observed CKM mixing angles themselves.  Equations [11.2], [11.3] 
and [11.27] (for empirical magnitude-only data) of PDG’s [21] coupled with [22] tell us that: 
 

13
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and the Jarlskog determinant which is a phase-convention-independent measure of CP violation 
is 0.20 5

0.162.96 10J + −
−= × .  A comparison of the empirical data with 1 0.947454co 2s 124θ =  suggests 

that the determinant V  might be of help.  We see from the product of three separate matrices in 

the first line above that 1ud cs tb us cb td ub cd ts ub cs td us cd tb ud cb tsV V V V V V V V V V V V V V V V V V V= + + − − − =   by 

construction, but this has two parts which we call the “major” and “minor” determinants 

ud cs tb us cb td ub cd tsV V V V V V V V V V
+

= + +  and ub cs td us cd tb ud cb tsV V V V V V V V V V
−

= + +  such that 

1V V V
+ −

= − = .  From the median empirical magnitude-only data, we calculate 

0.947535V
+

=  and 0.052355V
−

= −  thus 0.999889V V V
+ −

= − = , while the CP violating 

aspects of V are captured by 0.20 5
0.162.96 10J + −

−= × .  Then, comparing the data number 

1 0.947454co 2s 124θ =  with 0.947535V
+

= , it begins to appears as if 1cosθ  may in fact be 

synonymous with V
+
.  In fact, when considering the experimental errors in (6.13), then we find 

in [7.4] of [6] that 0.000400
0.00026- 20.947454V +

+
= , i.e., that 0.947273 0.947935V

+
< < .  This places the 

nucleon fitting angle 1 0.947454co 2s 124θ =  predicted from the actual proton and neutron 

masses, well within the experimental errors for V
+
. 

 
 So, once again driven by empirical data, we identify 1cos Vθ

+
≡  which connects the 

CKM matrix with the nucleon fitting angle, and also using 0δ = , we then rewrite (6.12) as:  
 

( )( )224
93N P F u d u dM M v m m m m V

+
+ = + + . (6.14) 

 
Now, this sum becomes specified within all experimental errors, when (6.14) is then solved 
together with the primary relationship (3.2) for N PM M− , we obtain theoretical values for the 

proton and neutron masses which are a function of only four parameters: um  and dm  from (3.3) 

and (3.4), the Fermi vev, and V
+
 obtained from the CKM mixing matrix.  Solving in 

combination with the mass difference of the primary relationship (3.2) then yields the separate 

masses in [6.31] and [7.6] of [6], namely ( 224
9 F u d u dv m m M M≡ , see [5.14] of [6]): 

 

( )( ) ( ) ( )( )3
221 24

2 93 3 2 3 / 2N F u d u d u d µ d uM v m m V m m m m m m m π
+

= + + + − + − , (6.15) 

( )( ) ( ) ( )( )3
221 24

2 93 3 2 3 / 2P F u d u d u d µ d uM v m m V m m m m m m m π
+

= + + − + + − , (6.16) 

 
This then provides the basis in [8.3] through [8.6] of [6] for obtaining the so-called “constituent” 
quark masses (which we shall refer to as “contributive” quark masses) in which the current quark 
masses are bundled together with all of their associated non-linear behaviors to specify their 
separate contributions in the order of 310 to 320 MeV to the overall observed free nucleon 
masses. 
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12) Charm, Strange, Top and Bottom-Flavored Baryon Masses: If the proton and neutron can 
be expressed in terms of the up and down current quark masses as we see in (6.14), then this 
suggests that other flavors of baryon containing c, s, t and b quarks can similarly be expressed on 
these second and third generation quark flavors are included.  In this regard, the culmination of 
the development leads us in [6.17] of [6] to a “mass and mixing matrix” Θ  given by:  
 

1 2 3 1 2 3

1 2
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1 2 3 1 2 3

1 2
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(6.17) 

 

which includes the shorthand definitions 2
, , , ,3u c t F u c tM v m≡  and 1

, , , ,3d s b F d s bM v m≡  for 

“vacuum-amplified” quark masses containing the current quark masses amplified by the Fermi 
vev and attenuated by their electric charge magnitudes.  The mathematics in the above was 
developed in the original parameterization of the Kobayashi and Maskawa matrices, but can be 
developed if desired in the standard parameterization appearing in (6.13).  If we set the c, s, t, b 
masses equal to 1, set 2 3 0s s= =  and take the trace, then we obtain 

( ) ( )( )21 24
19 9Tr 3 exp cosF u d u d N Pv m m i m m M Mδ θΘ = + + = +  in view of the above shorthands 

for , ,u c tM  and , ,d s bM .  This is identical to the N PM M+  sum in (6.12), and it means that the 

proton and neutron masses are embedded in Θ  as a special case.  Thus, it must be considered 
that upon further study, this matrix will help provide an explanation of the various c, s, t and b 
flavored baryons.  It should be kept in mind for any study in this direction, that in (3.2) we 
defined the up and down current quark masses from the proton and neutron masses which are 
known with much better precisions because they can be studies as free 0Q →  particles whereas 
quarks are confined.  It is to be expected that a similar approach will be warranted when it comes 
to these second and third generation quarks and the baryons within which they are confined. 
 
13)  Who Ordered That?: Why are there Three Fermion Generations?: Having just discussed 
the second and third generation quarks and baryons, it is worth now going back to Rabi’s 
original quip “who ordered that?” about the muon.  While the second and third generation quarks 
and leptons and their mixing properties have been well-characterized since then, Rabi’s question 
remains unanswered to this day.  Nobody has yet shown the theoretical imperative for having 
three generations, or for the mixing of these generations.  These have been described, but why 
nature manifests itself in this way remains unexplained.  The author in [18] shows how three 
stages of symmetry breaking of the SU(8) octuplet ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  already mentioned 

in point 11 above and integrally used in deriving the proton and neutron masses, leads inexorably 
to the appearance of three generations of quark and lepton and CKM-type mixing.  In retrospect, 
it was the author’s unfortunate omission not to reference this finding as to the three generations 
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in the title of [18].  Unlike what has been discussed in points 1 through 12, this is a qualitative, 
not quantitative concurrence with empirical data.  But it is equally important because the 
existence of multiple generations has, until now, remained one the great unexplained empirical 
mysteries of nature. 
 
14) Resonant Nuclear Fusion:  All of fundamental science has technological implications 
which may be developed over time, and the foregoing is no exception.  Protons and neutrons 
bind together to form nuclei.  When they do so they release fusion energies and the fused nuclei 
harbor mass defects which are very precise energy numbers which never vary from one 
experiment to the next.  There must be an explanation why, for example, the deuteron always has 
a binding energy of 2.224 52 ± 0.00020 MeV, each and every time, and indeed, why all the 
binding energies shown in Figure 1 and all the energies of the fusion and fission events related to 
these are as they are.  As we have now seen, the explanation rests in the current masses of the up 
and down quarks which these nucleons contain.  Stepping back and applying hindsight, there is 
little else that could account for these energies, because protons and neutrons are no more and no 
less than systems containing quarks and their highly-non-linear interactions.  But if that is the 
case, as pointed out in section 9 of [2] and more completely elaborated in [5], then the binding 
and fusion energy “toolkit” discussed in point 3 of section 5 which specifies the most elemental 
energy dosages released during a fusion event may be not only a theoretical toolkit, but also a 
technological one. 
 
 Nikola Tesla, who possessed one of the greatest historical aptitudes for extracting 
technology from science, once stated “if you want to find the secrets of the universe, think in 
terms of energy, frequency and vibration.”  So if the secret we wish to extract from nature is how 
to extract energy via nuclear fusion in the best way possible, and if think about vibrating nuclei 
and nucleons in resonance with certain energies and frequencies that might facilitate fusion 
better than can be done absent this vibration, then the foregoing toolkit energies which explain 
the nuclear binding and fusion data provide a compelling approach.  It is on this basis that the 
author has proposed and filed the international patent application [5] for catalyzing nuclear 
fusion by bathing a nuclear fuel in gamma radiation at energies established by the discrete 
energies in the dosage toolkit.  This needs to be tested and if viable, developed, but the testing is 
very simple:  In experiment 1, Carry out a given fusion reaction in the “usual” and “ordinary” 
way and carefully assemble and monitor all of the variables, e.g., temperature, power, density, 
etc. which are involved, as an experimental “control.”  Then in experiment 2 apply gamma 
radiation proximate the toolkit frequencies which are pertinent to that fusion reaction, and 
change nothing else.  Make certain that the only difference is that in experiment 2 the gamma 
radiation is applied and in experiment 1 it is not.  See if the fusion moves any of the key 
variables in a “fusion-favorable” direction.  If it does, then the further development of those 
results may provide the path for more practical and widespread applications of nuclear fusion to 
produce commercial energy. And, any favorable change based on using the toolkit energies 
would be a further empirical validation of these scientific results. 
 
15) Decoding the Nuclear Genome:  The many ways, the fundamental purpose of this paper 
is to present overwhelmingly-convincing evidence empirical evidence for the viewpoint that 
there is in fact a nuclear genome which needs to be decoded if humankind is to advance its 
understanding nuclear and elementary particle physics beyond where it stands at present, that this 
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nuclear genome is physically manifest through multiple relationships in which the nuclear 
masses and mass defects and binding and fusion / fission energies are expressed in terms of 
current quark masses (and in certain instances the Fermi vev and the CKM quark generation 
mixing matrices) which quarks masses can be established with the same level of precision as 
these other mass / energy parameters, and that all of this can be achieved using an unambiguous 
electron-proton-neutron (EPN) measurement system for defining the 0Q →  quark masses 
notwithstanding the fact that quarks are confined and so can never be directly observed in the 
quiescent  0Q =  states of being. 
 
 This exposition began with the postulated “primary mass relationships” (3.1) and (3.2) 
from which we then deduced 0Q =  up and down quarks masses with a high precision inherited 
from the EPN masses and then posed the three questions whether 1) it is legitimate and 
unambiguous as a measurement system, to establish 0Q =  quark masses in this way, 2) whether 
such an approach relating the quark masses to nuclear masses and energies could be validated by 
empirical data and 3) whether and how the thesis that baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory provides a firm theoretical foundation upon which all of 
this may be supported. 
 
 The evidence presented in this section of parts-per 105, 106 and even 107 AMU empirical 
fits between the up and down quark masses and multiple light nuclide binding energies 2H, 3H, 
3He, 4He, 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N, very tightly-bound nuclides 
like 56Fe, and even the proton and neutron masses themselves within all experimental errors, 
demonstrate beyond any reasonable doubt that there really do exist definitive relationships in 
nature between the up and down current quark masses and a plethora of energies observed in the 
nuclear world, and that the up and down quark masses are indeed the masses deduced in (3.3) 
and (3.4) with a precision close to a billion times better than anything that has been achieved to 
date by defining quark masses from the results of nuclear scattering experiments.  If our purpose 
was to validate the primary relationships (3.1) and (3.2) and thus the up and down quark masses 
(3.3) and (3.4) by showing that if these relationships and masses are regarded as true many other 
nuclear energies could also be similarly-related to these masses, then every single one of points 1 
through 11 of this section contain further examples of secondary nuclear energy relationships 
which can be expressed in terms of the up and down current quark masses, just like the primary 
relationships (3.1) and (3.2), thus providing overwhelming empirical validation.  Point 12 
suggests possible additional validation (or contradiction) through the study of other baryon 
masses, and it is also very important as we are reminded of in point 13, that this approach allows 
us to finally answer Rabi’s questions about the higher fermion generations, “who ordered that?”   
 
 So at this point, the primary relationships (3.1) and (3.2) have been amply validated by 
empirical data, and this validation also demonstrates that the EPN measurement system laid out 
here yields sensible and unambiguous results.  Now the time has arrived to summarize the 
theoretical considerations from which the author originally deduced the mass / energy 
relationships (3.1), (5.1) and (5.2) from which all of the other empirical connections elaborated 
here were developed via comparison with empirical data.  The underlying theory, of course, is 
that baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory as originally 
presented by the author in [1], and thereafter, more-deeply developed in [10] which for the first 
time fully lays out the quantum field theory for this via an exact, non-linear path integration of 
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classical Yang-Mills gauge theory.  In short, we now turn to the third question from section 3: is 
there a firm theoretical foundation upon which all of this may be supported? 
 
7. The Theoretical / Empirical Interface 
 
 The author’s thesis that the observed baryons are the chromo-magnetic monopoles of 
Yang-Mills gauge theory is what initially led following development in [1] and later deeper 
elaboration in [10] to equations (5.1) and (5.2) and then by subtraction of (5.1) from (5.2), to 
equation (3.1).  These three equations, in turn, became the foundation for all of the empirical 
connections elaborated in the last section which cumulatively provide overwhelming evidence 
for the validity of the underlying theory, as has been reviewed here.  So because it is equations 
(5.1) and (5.2) which are the “interface equations” between the underlying theory and the ability 
to prove that theory by reference to the wealth of empirical data enumerated in the last section, 
we shall briefly review the underlying theory as to the connection between Yang-Mills chromo-
magnetic monopoles and baryons, but leave the details of this theory to the original source 
materials [1] and [10], and place particular emphasis on how it is that (5.1) and (5.2) ultimately 
derive from that theory.  
 
 We start by returning to the question posed in point 3 of section 3: “If we can legitimately 
assert (3.3) and (3.4) to be the 0Q =  up and down quark masses and if we can find secondary 
support from a broad array of nuclear data [which has now been done], then we get to the third 
question: what is the overarching theory, and does that theory make sense within the overall 
framework of theoretical physics?”   
 
 And as to theoretical sensibility, the thesis that the observed baryons are the chromo-
magnetic monopoles of Yang-Mills gauge theory is in fact exceptionally conservative, and is 
grounded solely in widely-accepted, highly-settled, thoroughly-tested science.  Its novelty rests 
in its deductive combination of known, accepted and well-validated scientific theories and 
theoretical elements to uniquely and unambiguously deduce new results and new explanations 
for previously-unexplained observational data, such as what was reviewed in the last section.  As 
suggested near the start of section 6, while brand new ideas ought not to be ruled out out-of-
hand, a combination of settled science and scientific elements is preferable, and brand new 
notions should only be used as a last resort when there is no apparent way to succeed by 
restricting oneself to combining known elements in unknown ways.   
 
 Specifically, setting aside the empirical validations already reviewed, in order to accept 
this theory from a theoretical standpoint, one is required simply to believe and accept no more 
and no less than: a) that Maxwell’s electrodynamics which includes (vanishing) magnetic 
monopoles is a correct theory of nature; b) that Yang-Mills gauge theory which extends 
Maxwell’s electrodynamics to non-abelian domains is a correct theory of nature; c) that Dirac’s 
theory is a correct theory of nature particularly insofar as it relates fermion wavefunctions to 
current densities via Jσ σψγ ψ= ; d) believing that Dirac-Fermi-Pauli were correct when they 
asserted that multiple fermions within a single system must occupy exclusive states distinguished 
from one another by one or more quantum numbers (the “Exclusion Principal”); and e) for the 
quantum theory of chromodynamics QCD, believing that Feynman’s method of path integration 
is the correct way to start with a classical field equation in spacetime (configuration space) for a 



NOVEMBER 1, 2014 DRAFT – SUBJECT TO PROOFREAD AND REVISION 
J. R. Yablon 

39 
 

field ϕ  with source J and its related Lagrangian density ( ), JϕL  and action 

( ) ( )4, ,S J d x Jϕ ϕ= ∫ L , and convert this over to a quantum field theory by performing the 

integration ( ) ( )exp exp ,Z iW J D iS Jϕ ϕ= = ∫C  and then extracting the quantum field ( )W J  in 

(Fourier-transformed) momentum space.  And to cross the threshold from theory to empirical 
confirmation by obtaining the interface equations (5.1) and (5.2), one also needs to believe and 
accept f) that the quarks inside a baryon, although confined, are asymptotically free and can thus 
be treated at least in an approximate manner as free fermions. 

 
If one accepts and believes a) through d), then the inexorable result of merely combining 

all of these together leads one to conclude that the classical magnetic monopoles of Yang-Mills 
gauge theory – specifically the sources of a non-vanishing magnetic field flux 0F ≠∫∫�  across 

closed spatial surfaces – do indeed have the earlier noted antisymmetric R G B∧ ∧  color 

symmetry of a baryon and confine everything but entities with the symmetric RR+GG+BB color 
symmetry of a meson with 0F ≠∫∫�  being the classical representation of this meson flux, as 

established in detail in Part I of [10].  This combination also teaches that employing SU(3)C as 
the color group of chromodynamics is not a choice, but is required (the only choice is how to 
name the three mandated eigenstates).  So chromodynamics is not a theory of first principle, but 
is a corollary theory emerging inexorably from the combination of a) through d).   And if one 
further accepts and believes e), then the quantum theory which emerges via theoretical deduction 
following path integration leads to a running QCD coupling which matches up to Figure 1 above 
within experimental errors, as established generally in section 18 and specifically in [18.22] and 
Figure 14 of [10].  Finally, if one accepts f), then it becomes possible to use this theory to obtain 
(5.1) and (5.2) which is the bridge to empirical testing.  But the fact that (5.1) and (5.2) and their 
offspring (3.1) lead to all of the empirical confirmations already enumerated here provides 
comfort that this treatment of quarks inside a baryon as approximately-free particles is 
empirically-valid.  So let us now turn as directly as possible to how the interface equations (5.1) 
and (5.2) are obtained and then work backwards to place that in the overall theoretical context.  

 
The starting point for deriving the interface equations (5.1) and (5.2) in the original 

formulation of the baryon / monopole thesis was equation [11.2] of [1].  In the later formulation 
presented in [10], the equivalent starting point is equation [10.4], which is reproduced below: 

 

( )( ) ( )( )
( ) ( ) ( )
eff 0 0

1 1 1

[ ] [ ] [ ]

Tr 0 Tr , 0

R R R R G G G G B B B B

i F G G

p m p m p m

µν µ ν

µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ = Σ  

= − + − + −/ / /
. (7.1) 

 

The notation in ( )( )eff 0
0F µνΣ  is a bit cumbersome so let us simplify this a bit, and also 

remind the reader what this means.  The Σ  in (7.1) simply reminds is of the use of the spin sum 

( )( )2
spins /uu N E m p mΣ = + +/ during the course of the derivation starting with [9.12] of [10].  

If we simply keep in mind that a spin sum was used to get to that point then we can drop the Σ  

from the notation.  The ( )( )
0

0  notation developed in section 8 of [10] tells us that that (7.1) is 
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taken in the abelian limit of non-abelian gauge theory for which ( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − +  

and in which we have not recursed Gµ  into itself at all.  As shown in section 7 of [10], a natural 

consequence of the non-linearity of Yang-Mills gauge theory is that when we invert the classical 
Maxwell chromo-electric charge equation between Gµ  and Jµ , we find that ( ),G G Jµ µ µ  is a 

function of itself along with Jµ , and if we recurse n time before cutting off then we denote this 

as ( )( )0
n

Gµ .  To simplify, we shall simply keep the subscript “0” as a reminder that Fµν  above 

is taken at the zero recursive order which is the abelian limit and drop the nested parenthesis.  
 
Finally, the “eff” subscript for “effective” in (7.1) is used to denote that this is the portion 

of the field strength tensor Fµν  which actually net-flows [ ]
eff

, 0F F i G G= = − ≠∫∫ ∫∫ ∫∫� � �  across 

the closed surfaces surrounding the “faux” magnetic sources [ ],P id G G idGG′ = − = −  of Yang-

Mills gauge theory.  This is because the term dG  in the complete field strength 

[ ],F dG i G G= −  identically drops out of any expression for F∫∫�  because 0ddG =  because the 

exterior derivative of an exterior derivative is zero in differential geometry which is why 

0F =∫∫�  in electrodynamics, which combines Gauss’ law for magnetism and Faraday’s law for 

induction.  This is the heart of how baryons are theoretically developed from the monopoles of 
Yang-Mills gauge theory by deductively combining points a) and b) above (Maxwell and Yang-
Mills are both correct theories of nature).  Thus we shall retain the “eff” subscript as a reminder 
of this.  Therefore, ( )( )eff 0

0F µνΣ  above shall now be denoted simply eff 0F µν  to mean the net-

flowing 0F ≠∫∫�  portion of F in the zero-recursive order of Yang-Mills gauge theory. 

 
The final aspect of (11.1) which we have not yet discussed, that this is a trace equation.  

If we backtrack to an earlier equation such as [9.20] of [1] from which this is descended to write 
this in matrix form prior to taking the trace, then (7.1) can be put in its matrix form:   

 

( )
( )

( )

1

[ ]

1

eff 0 [ ]

1

[ ]

0 0

0 0

0 0

R R R R

G G G G

B B B B

p m

F i p m

p m

µ ν

µν µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

 −/ 
 = − −/
 
 −/ 

. (7.2) 

 

This is the formal starting point via 31
2 TrE F F d xµν

µν= ∫∫∫  using both inner and outer product 

traces as reviewed in this paper near the start of section 5, for deriving (5.1) and (5.2) which are 
the interface equations leading to all the empirical connections reviewed in section 6.  So let us 
proceed to show how this connection is made.  This will essentially review section 11 of [1], but 

with additional clarity.  We begin by looking at the generic expression ( ) 1

[ ]p mµ νψγ γ ψ−−/  in 

(7.2) for each of the three colors of quark. 
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 First, we separate the propagators as ( ) ( ) ( )1 2 2/p m p m p m
−− = + −/ /  into two parts: 

 

( ) ( )1 [ ] [ ]
[ ] 2 2 2 2 2 2

,mp m p
p m

p m p m p m
µ νµ ν µ ν

µ ν

ψ γ γ ψψγ γ ψ ψγ γ ψ
ψγ γ ψ−  +/ / − = = +/ − − −

. (7.3) 

 
Now we expand out the numerator in the latter term using p pσ

σγ=/ , as such: 

 
0 1 2 3

[ ] [ ] [ 0 ] [ 1 ] [ 2 ] [ 3 ]p p p p p pσ
µ ν µ σ ν µ ν µ ν µ ν µ νψγ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ= = + + +/ . (7.4) 

 
We evaluate each of the independent components 31,23,12,03,02,01=µν  and apply the Dirac 

relation 32105 γγγγγ i=  in various combinations to terms which do not drop out via the [ ],µ ν  

commutator.  Using µνµν η=g  for flat spacetime, one may summarize the result by: 

 
[ ] 5

[ ] 2i α β
µ ν µναβψγ ρ γ ψ ε ρ ψγ γ ψ=/  (7.5) 

 
So we use this as well as the Dirac covariant , 2iµ ν µνγ γ σ  = −   to rewrite (7.3) as: 

 

( )
[ ] 5

1

[ ] 2 2 2 2
2 2

m
p m i i

p m p m

α β
µν µναβ

µ ν

ψσ ψ ε ρ ψγ γ ψ
ψγ γ ψ−− = − +/ − −

. (7.6) 

 
We see therefore, that this generic expression contains both a second rank antisymmetric tensor 

µνψσ ψ  and a first rank axial vector 5βψγ γ ψ .  Using chirality language, this means that 

eff 0 eff 0 eff 0V AF F Fµν µν µν= +  in (7.2) has both a vector (V) and an axial (A) term.   

 
Let us now set aside the axial term eff 0AF µν  and focus on the vector term eff 0VF µν  in the 

2 0p →  limit for which the propagators disappear and the interactions essentially occur at a 
point.  We refer to, e.g., [23] at p. 257, for a similar analysis explaining how the Fermi coupling 
constant FG  really is a point-interaction manifestation of a W vector boson propagator 

( ) ( ) 12 2 2/ /W Wg k k M k Mµν µ ν
−

− −  in the 2 0k →  limit for which 2 2/ 2 / 8F w WG g M= , 

connecting the modern understanding of weak interactions with Fermi’s original conception of β-
decay modelled on electromagnetic interactions.  Using the V portion of (7.6) in (7.2) for 

2 0p →  allows us to now write this matrix as: 
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eff 0

0 0

2 0 0

0 0

R R

R

G G
V

G

B B

B

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

. (7.7) 

 
It is this matrix which is the theoretical point of departure for connecting with the electron rest 
mass in (3.1) and the various nuclear energies elaborated in sections 3 through 6 of this paper.  
So now, with the benefit of two years of retrospective perspective including the many empirical 
connections enumerated in section 6, we shall elucidate that connection which was originally 
uncovered in sections 11 and 12 of [1] between (7.7) and observational energy data. 
 
 As reviewed at the start of section 5, the energy of pure gauge fields in Yang-Mills theory 

may be deduces by taking 3 1
2 TrE d x F Fµν

µν= ∫∫∫  in both outer and inner product traces.  We 

now have an eff 0VF µν  in (7.7) above which flows from the thesis that baryons are the chromo-

magnetic monopoles of Yang-Mills and specifically from combining Maxwell and Yang-Mills 
and Dirac Theories and Fermi-Dirac-Pauli exclusion.  So we shall use this to deduce the 
associated energy E. 
 
 First, based on (7.7), we form the outer product trace: 
 
1

eff 0 eff 02 Tr

2

2 2 2

V V

R G BR G BGR G BR B

R R G G B B

R G BR G BG G B RB R

R G G B B R

F F

m m m m m m

m m m m m m

µν
µν

µνµν µν
µν µν µν

µν µν µν
µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψψ σ ψ ψ σ ψ

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

⊗

 
+ + 

 =  
 + + + 
 

. (7.8) 

 
It will be appreciated that this includes the inner product trace, which consists only of the top 
parenthetical line in the above: 
 

1
eff 0 eff 02 Tr 2 R G BR G BGR G BR B

V V
R R G G B B

F F
m m m m m m

µνµν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψψ σ ψ ψ σ ψ 
⋅ = + + 

 
 

.(7.9) 

 
So the inner product has pure-color RR, GG and BB products while the outer product adds RG, 
GB and BR cross-color products. 
 
 Next, we refer to sections 7 and 8 of [1] as also reviewed in section 10 of [10] whereby 
for the proton, the RGB colors of quark are respectively assigned to and have the appropriate 
flavor generators for the duu flavors of quark and for the neutron these same colors are assigned 
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to and have generators for the udd flavors of quark.  Therefore, (7.7) is use to derive both a 
proton (P) and a neutron (N) field strength: 
 

eff 0

0 0

2 0 0

0 0

d d

d

u u
V P

u

u u

u

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

, (7.10) 

  

eff 0

0 0

2 0 0

0 0

u u

u

d d
V N

d

d d

d

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

. (7.11) 

  
This is the first place at which the up and down current quark masses enter the picture.  This 
means that the outer product traces: 
 

1
eff 0 eff 02 Tr 2 4 4d u ud u ud d ud d u

V P V P
d d u d u u

F F
m m m m m m

µν µν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ 
⊗ = + + 

 
 

,(7.12) 

 

1
eff 0 eff 02 Tr 2 4 4u u du u du d du d d

V N V N
u u u d d d

F F
m m m m m m

µν µν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ 
⊗ = + + 

 
 

.(7.13) 

 
And if we subtract (7.12) for the proton from (7.13) for the neutron, we find that the difference: 
 

1 1
eff 0 eff 0 eff 0 eff 02 2Tr Tr 2 3 3d ud ud ud u

V N V N V P V P
d d u u

F F F F
m m m m

µν µν
µν µνµν µν

µν µν

ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ 
⊗ − ⊗ = − 

 
 

.(7.14) 

 

It is (7.12) which eventually turns into ( ) ( )
3
24 4 / 2P d u d uE m m m m π= + +  in (5.1), (7.13) which 

becomes ( ) ( )
3
24 4 / 2N u u d dE m m m m π= + +  in (5.2), and finally, (7.14) which turns into

( ) ( )
3
23 / 2N P d u eE E m m mπ− = − ≡  (5.3) a.k.a. the primary relationship (3.1).  One should 

closely compare all of this, because these is how the structure of the theory that baryons 
including protons and neutrons are the chromo-magnetic monopoles of Yang-Mills gauge theory 
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bleeds through to (5.1), (5.2) and (5.3) which become the basis for all of the other empirical 
relationships heretofore reviewed.   
 

Specifically, as will now be reviewed, when we use (7.12) to (7.14) in 
31

2 TrE F F d xµν
µν= ∫∫∫ , carry out the integration, and then establish the normalization of the 

Dirac spinors by comparing the theoretical energy results to empirical data (“empirical 

normalization”, see [1] after [11.29]), we uncover term mappings 2/u uu u u um mµν µνψ σ ψ ψ σ ψ ⇒ , 
2/d dd d d dm mµν µνψ σ ψ ψ σ ψ ⇒  and /u du d u d u dm m m mµν µνψ σ ψ ψ σ ψ ⇒ , together with the 

( )
3
2

3
2 2π π=  divisor which emerges from the 31

2 TrE F F d xµν
µν= ∫∫∫  integral over three space 

dimensions.  Let us now review how this is done. 
 
All of (7.12), (7.13) and (7.14) when used as integrands in 31

2 TrE F F d xµν
µν= ∫∫∫  will 

yield one of three distinct terms: 3 21
2 /u uuu u u uE d x mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a pure up / up 

term,  3 21
2 /d ddd d d dE d x mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a pure down / down term, and 

31
2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a mixed up / down term.  The factor of 1

2  is to 

account for the overall factors of 2 in (7.12) through (7.14) so we are comparing energy numbers 
to energy numbers.  These are then weighted within the overall energies 31

2 TrE F F d xµν
µν= ∫∫∫  

via the constant coefficients (1, 3, 4) variously appearing in (7.12), (7.13) and (7.14).  And these 
also become the “energy dosages” in the “toolkit” first referred to after (6.7) which physically, 
are emitted from nuclei during fusion events.  So, for example, we earlier spoke after (6.8) of 

how nine (9) energy doses ( )1.5
9 / 2u dm m π  are emitted as energy when 4He is fused with two 

protons to create 6Li with the same number of nine (9) up / down quark pairs, and of how fifteen 

(15) energy doses ( )1.5
15 / 2u dm m π  are emitted when 8Be is fused with two protons to create 

10Li with the same number of fifteen (15) up / down quark pairs.  What we were really saying 
when more formally-specified in terms of the underlying theoretical physics, is that in the former 
case 4 6

2 32 EnergyHe p Li e ν++ → + + +  there are nine (9) and in the latter case 
8 10
4 52 EnergyBe p B e ν++ → + + +  there fifteen (15) simultaneous emissions of the energy dosage 

31
2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫ , one such dosage associated with each pair of up and 

down quarks.  So now, let us review how this connection gets made. 
 

 Let us start with the generic expression 3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  for a fermion 

wavefunction ( )ψ x  and take this to be representative of the up or down quark, when used in the 

“pure” terms mentioned just above.  Now, any spatial dependence for this integral over 3d x is 
contained in ( )ψ x , so to go any further with this calculation we must make some supposition as 

to spatial-dependency of ( )ψ x .   We can choose from a range of possible functions, e.g., 

Lorentzian, exponential, Gaussian, etc.  Indeed, any function  may be used, whether or not it is 
radially symmetric, provided it is renormalizable and so finitely integrates when placed in 



NOVEMBER 1, 2014 DRAFT – SUBJECT TO PROOFREAD AND REVISION 
J. R. Yablon 

45 
 

3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫ .  As an ansatz to be able to perform some numeric calculation, 

and without limitation as to any other ansatz that another may choose, the author at [9.9]  of [1] 

chose the radially-symmetric Gaussian wavefunction ( ) ( ) ( )( ).75 22 21
02( ) / expr u p m m r rψ π

−
= − −  

where m generically needs to be a number with mass dimensionality and 0r  is the radial 

coordinate of the center peak of the Gaussian.   Further, to give m some meaning in relation to 
the physics being studied, m is chosen in this ansatz to be equal to the rest mass of the fermion.  
Again, this is done simply to be able to do a calculation with the hope that energy numbers 
which makes sense in relation to something observed might emerge from this calculation; other 
exploratory choices for ( )ψ x  are also possible. 

 
 Now, a Gaussian is the standard expression use to represent a minimum-uncertainty 
wave-packet and thus is associated with free particles.  So, one may ask whether this “freedom” 
is suitable for quarks which are confined.  But quarks are in fact asymptotically free, so aside 
from the “edge” region of a nucleon near QCDQ = Λ  as discussed in section 2, a free-particle 

Gaussian would be a good approximation to an “approximately free” fermion such as an 
asymptotically-free quark.  Also, wave-packets such as the foregoing Gaussian with a standard 
deviation comparable to their Compton wavelength /m cλ = ℏ  contain negative-energy 
amplitudes indicating the presence of antiparticles.  But we know that nucleons are teeming with 
quark / antiquark states, exhibited no more clearly than through the manifold of qq  meson jets 
emitted under any substantial scattering impact.  Finally, the Compton wavelengths of the 
current quark masses are on the order of 40 Fermi for the down quark and 85 Fermi for the up 
quark, which exceeds ~ 2 Fermi length scale QCD/ 2.1780 fmr cΛ ≡ Λ =ℏ  of QCDΛ  by more than a 

full order of magnitude and so “bleeds out” from the proton and neutron even though the quarks 
are confined.  But as noted after (6.16), see also the end of section 11 in [1], the constituent i.e. 
contributive quark masses have a standard deviation of less than 1 Fermi which places them well 
within the rΛ  length scale.  And what we learn in sections 5 and 6 is that although the current 

quarks are confined, their mass values are the central drivers of the energies which do pass in and 
out of nuclides and nucleons during fusion and fission events.  So while nucleons do confine 
quarks, they do not confine energies, and the energies they release are driven directly by the 
current quark masses.  Thus one can acquire some qualitative comfort with a Compton 
wavelength that extends beyond rΛ  by over 1 order of magnitude given that the same wavelength 

drives the energies which also bleed out from the nucleons.  So we set aside playing “Hamlet” 
over what ( )ψ x  to use, we keep in mind that different ( )ψ x  can be tried and that this might be 

an interesting exercise, and we go into 3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  with a radially-symmetric 

Gaussian and with the Compton wavelengths of the current quarks masses setting the spatial 
spread and see what comes out. 
 

 So, we set ( ) ( ) ( )( ).75 22 21
02( ) / expr u p m m r rψ π

−
= − −  in 3 21

2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  

four times which yields fourth powers of the terms in ( )rψ , and remove the space-independent 
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terms from the integral.  We then make use of the solution 

( )( ) ( )
3
223 2 3

0exp 2 / 2 /d x m r r mπ− − =∫∫∫  for the Gaussian integral, and finally reduce.  Thus: 

 

( )( )

( )

3
2

3
2

3
23 3 21

02 2 2 2

32

2 3

1
exp 2

1 1

2 2

E d x u uu u d x m r r
m m m

m m
u uu u u uu u

m m

µν µν
µν µν

µν µν µν µν

ψσ ψψσ ψ π σ σ

π σ σ σ σ
π π

−
 = = − − 
 

   = =   
  

∫∫∫ ∫∫∫
. (7.15) 

 

So we see how the this integration converts the pure terms and also injects a ( )
3
22π  divisor via  

( )
3
22/ / 2u uu u u um mµν µνψ σ ψ ψ σ ψ π⇒  and ( )

3
22/ / 2d dd d d dm mµν µνψ σ ψ ψ σ ψ π⇒ .  The ( )

3
22π  

which was laced throughout the empirical calculations in sections 3 through 6 is seen to have its 

fundamental mathematical origins in ( ) ( )
3
23 2exp .5 2 /d x Ax Aπ− =∫∫∫  which is the three-space 

Gaussian integral.  And we see that for some different, not-Gaussian normalizable ( )ψ x  with a 

fourth-power integral ( )3d xf M=∫∫∫ x , whatever factor appears in place of ( )
3
22π  would be 

driven by M.  Beyond ( )
3
2/ 2m π , because of the Dirac spinors being a function ( ),u m p , the 

remaining term u uu uµν µνσ σ  in (7.15) above is a function only of mass m and momentum p.  The 

Dirac spinors are subject to normalization and this normalization can be chosen.  So we should 
choose the spinor normalization such that the energy number in the resultant 

( )
3
21

2 / 2E m u uu uµν µνπ σ σ= ⋅  makes sense in relation to an observed energy or energies. 

 
 So we return to (7.14) which contain only pure up / up and down / down terms, and so 
can make use of (7.15).  Specifically, combining (7.14) and (7.15) enables us to write: 
 

( ) ( )
3 3
2 2

3 31 1
eff 0 eff 0 eff 0 eff 0 eff 0 eff 02 2

3 3

Tr Tr

2 3 3

3 3
2

2 2

V N V N V N V N V P V P

d ud ud ud u

d d u u

d d d d d u u u u u

E E E d x F F d x F F

d x d x
m m m m

m u u u u m u u u u

µν µν
µν µν

µν µν
µν µν

µν µν µν µν

ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ

σ σ σ σ
π π

∆ ≡ − = ⊗ − ⊗

    
= −    

        

= −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

 
 
 
 

. (7.16) 

 
This E∆  represents the energy difference between 3 1

eff 0 eff 0 eff 02 TrV V VE d x F F µν
µν= ⊗∫∫∫  for the 

neutron and proton vector (V), monopole-effective, zero-recursive-order pure field strengths 
(7.11) and (7.10).  And it will be seen that if we normalize the Dirac spinors such that 

1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= = , that (7.16) will reduce to: 
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( )
( )3

2
eff 0 eff 0

3

2
V N V P d uE E E m m

π
∆ = − = − , (7.17) 

 
which is (5.3) a.k.a. the primary relationship (3.1) upon which all of the empirical results from 
section 3 onward were based.   
 

Now, as was stated after (5.3), and as may be reviewed in section 11 and specifically 
[11.21] of [1], the author first evaluated (7.16) and (7.17) using the PDG data 0.7

0.52.3 MeVum +
−=

and 0.5
0.34.8 MeVdm +

−= and its error bar ranges to deduce that 
∆

.286 MeV<E .704 MeV< , with a 

median value of 
∆

E .495 MeV=  which is only about 3% off from the electron rest mass based 

on PDG data with error bars much larger than 3%.  The author then hypothesized for further 
confirmation which was subsequently successful in the other ways enumerated section 6, that 
this energy eff 0 eff 0V N V PE E E∆ = −  is in fact equal to the electron rest mass because in the zero-

recursion abelian limit where ( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − + , all of the interaction which gives 

rise to the observed neutron minus proton mass difference has been turned off.  Thus (7.17) is a 
relationship which contains only a “signal” for bare current quarks without “noise.”  And with 
only signal and no noise, it is sensible that the neutron “signal mass” would differ from the 
proton “signal mass” by precisely the mass of the electron.    

 
So this data concurrence motivated the author to set eff 0 eff 0e V N V Pm E E E∆≡ = −  by 

definitional hypothesis, which then mandates 1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= =  for 

normalization because this is what reduces (7.16) to (7.17) which then enables the empirically-
accurate definition eff 0 eff 0e V N V Pm E E E∆≡ = − .  When we then calculate out the consequence of 

this “empirical normalization,” we find in [11.29] of [1] that the quark normalization coefficient 
has the form ( )2 1

4!
/ 2N E m m= + , and specifically, that ( )2 1

4!
/ 2u u u uN E m m= +  and 

( )2 1
4!

/ 2d d d dN E m m= +  for the up and down quark spinors respectively, based on the 

conventional definition ( ) ( ) ( ) ( )( )/s s sTu N E mχ χ≡ ⋅ +pσ .  It is also of interest as discussed in 

Figure 3 of [1] that by empirically matching up (7.17) with the electron via em E∆≡  the deduced 

4! constant in the divisor of the normalization coefficient happens to coincide with the precise 
number of fermions known in nature: 4=3+1 colors of quark plus lepton times 3 generations 
times 2 isospin states up and down. 
 
 So if eff 0 eff 0V N V PE E E∆ = −  appears to produce a close empirical result, one might expect 

each of the neutron and proton signal energies eff 0V NE  and eff 0V PE  to also have some meaning in 

relation to something that is observed, so the next step is to study these energies. But as noted 
after (7.14), the mixed energy 31

2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫  needs to now be 

calculated because these up / down mixed integrands appear in (7.12) and (7.13) for the proton 
and neutron field strengths.  So similarly to (7.15), we use 

( ) ( ) ( )( ).75 22 21
, , , , 02( ) / expu d u d u d u dr u p m m r rψ π

−
= − −  now explicitly quark-labelled because we need to 
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distinguish up from down quarks to calculate the mixed energy.  Here, after solving the Gaussian 

and reducing and separately isolating a term u dm m  with mass dimensionality of +1 we obtain: 

 

( )( )( )
3 3
2 2

33 3
22 2

3
2

3
2

31
2

23 2 2
02 2

2 2

2 2

2 2

1
exp

1

u du d
ud

u d

u du d u d
u d u d

u d
u du d

u d u d

u d u d
u du d

u d

E d x
m m

u u u u d x m m r r
m m m m

m m
u u u u

m m m m

m m m m
u u u u

m m

µν µν

µν µν

µν µν

µν µν

ψ σ ψ ψ σ ψ

π π σ σ

π σ σ
π π

σ σ
π

− −

=

   
= − + −   

   

    
=      +     

 
=  + 

∫∫∫

∫∫∫
. (7.18) 

 

To solve the Gaussian we start with the solution ( )( ) 3
2

23 2 3
0exp /d x m r r mπ− − =∫∫∫  and may 

then obtain ( )( )( ) ( )
33 22

23 2 2 2 2
0exp /u d u dd x m m r r m mπ− + − = +∫∫∫  by the variable scaling 

substitution 2 2 2
u dm m m→ +  thus ( )

3
23 2 2

u dm m m→ + .  As a check on the calculation we see that 

in the special case where u dm m m= ≡ , the result in (7.18) will coincide identically that in (7.15). 

 

 Now, the dimensionless term ( )( )
3
22 2/u d u dm m m m+  from which we have separated the 

+1 dimensional u dm m  looks a bit complicating at first.  But we recall that in electroweak 

theory there are similar expressions of the form ( )2 2/u d u dm m m m+ .  Specifically, we recall that 

in electroweak theory sin cosw W y Wg g eθ θ= =  where e is the electric charge, wg  the weak 

charge, yg the weak hypercharge, and Wθ  is of course the weak mixing angle.  And we recall that 

in the course of calculating from this one arrives at ( )2 2sin cos /W W w y w yg g g gθ θ = +  where 
2 2 2

Z w yg g g≡ +  is the charge strength of the Z boson with a mass 1
2Z F ZM v g=  where Fv  is the 

Fermi vev.  So the ( )2 2/u d u dm m m m+  above seems suggestive that there is an analogous mixing 

angle rotating between the up and down quark masses.  Let us now explore this connection 
which the author has not presented explicitly in any earlier papers.  As the discussion of this 
angle proceeds, the reader may find it helpful to refer to Figure 3 following (8.15) below. 
 
8. First Generation Quark Mass Mixing 
 
 Analogously to electroweak theory, we postulate a first generation quark mass mixing 
angle θ and mass 1m  defined such that: 
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1sin cosd um m mθ θ≡ ≡ . (8.1) 

 
So immediately, because tan /u dm mθ = , we may draw a right triangle with um  on the leg 

opposite and dm  on the leg adjacent θ , and thus with 2 2
u dm m+  on the hypotenuse.  Therefore 

2 2sin /u u dm m mθ = + , 2 2cos /d u dm m mθ = +  and thus: 

 

2 2 2
sin cos u d u d

u d

m m m m

m m mζ

θ θ = =
+

 (8.2) 

 
which is identical to the factor to the 3/2 power that appeared in (7.18).  In the above we have 
defined 2 2 2

u dm m mζ ≡ + simply for convenience, and used the Greek zeta to remind us of the 

analogy to the electroweak 2 2 2
Z w yg g g≡ + .  So we can use (8.2) to remove the masses from this 

factor, and instead express it in terms of θ , thus: 
 

( )
3
2

3
2

31
2 sin cosu du d u d

ud u u d d
u d

m m
E d x u u u u

m m
µν µν

µν µν

ψ σ ψ ψ σ ψ
θ θ σ σ

π
= =∫∫∫ . (8.3) 

 
If (3.3) and (3.4) are indeed the empirical 0Q =  quark masses in the EPN measurement scheme 
discussed section 4, then these can be used to deduce tan θ = 0.453 236 693, therefore the mixing 

angle θ = 24.381 777 8°.  Additionally, 2 2 0.005 783 u076 5.386 90110 MeVu dm m mζ = + = =  

may be deduced. 
 
 At this point, we have all that we need to return to (7.12) and (7.13), use them as 
integrands in 3 1

2 TrE d x F Fµν
µν= ⊗∫∫∫  for each of the proton eff 0V PF  and the neutron eff 0V NF  

and thereby calculate associated energies eff 0V PE  and eff 0V PE .  Inserting (7.15) for both the up 

and down quarks and (8.3) into (7.13) and (7.14) we obtain: 
 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02

3

Tr

2 4 4

2 4 sin cos 4
2 2

V P V P V P

d u ud u ud d ud d u

d d u d u u

u dd u
d d d d u u d d u u u u

E d x F F

d x
m m m m m m

m mm m
u u u u u u u u u u u u

µν
µν

µν µν µν
µν µν µν

µν µν µν µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

σ σ θ θ σ σ σ σ
ππ π

= ⊗

 
= + + 

 
 

 
 = + +
 
 

∫∫∫

∫∫∫ ,(8.4) 
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( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02

3

Tr

2 4 4

2 4 sin cos 4
2 2

V N V N V N

u u du u du d du d d

u u u d d d

u du d
u u u u u u d d d d d d

E d x F F

d x
m m m m m m

m mm m
u u u u u u u u u u u u

µν
µν

µν µν µν
µν µν µν

µν µν µν µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

σ σ θ θ σ σ σ σ
ππ π

= ⊗

 
= + + 

 
 

 
 = + +
 
 

∫∫∫

∫∫∫ .(8.5) 

 

 Next we apply the empirical normalization 1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= =  used 

after (7.17) to conform the deduced energy difference eff 0 eff 0V N V PE E E∆ = −  with the electron 

rest mass via em E∆≡  which results in ( )2 1
4!

/ 2u u u uN E m m= +  and ( )2 1
4!

/ 2d d d dN E m m= + .  

So this means that in the mixed term ( )( ) ( )( )2 1
4!

/ 2 2ud u u d d u dN E m E m m m= + +  turns out to 

be the normalization which emerges from the square root of the product of these individual quark 
normalizations via (8.3), and this in turn means that there is a like-normalization 

1
2u u d du u u uµν µνσ σ =  for the mixed term found in (8.3).  Applying all of these normalizations in 

(8.4) and (8.5) now leads us to: 
 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02 Tr 4 sin cos 4

2 2

u dd u
V P V P V P

m mm m
E d x F F µν

µν θ θ
ππ π

= ⊗ = + +∫∫∫ , (8.6) 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02 Tr 4 sin cos 4

2 2

u du d
V N V N V N

m mm m
E d x F F µν

µν θ θ
ππ π

= ⊗ = + +∫∫∫ . (8.7) 

 

For the special case / 4 45θ π= = ° , we have ( )
3 3
2 2sin cos 1/ 2θ θ = , and these will reduce to: 

 

( )
( )3

2

3 1
eff 0 eff 0 eff 02

1
Tr 4 4

2
V P V P V P d u d uE d x F F m m m mµν

µν
π

= ⊗ = + +∫∫∫ , (8.8) 

( )
( )3

2

3 1
eff 0 eff 0 eff 02

1
Tr 4 4

2
V N V N V N u u d dE d x F F m m m mµν

µν
π

= ⊗ = + +∫∫∫ . (8.9) 

  
These are now identical with (5.1) and (5.2), which then led in (5.8) and (5.9) to the 

missing mass average ( )1
2 8.714 9941MeVP N∆ + =∆  at the empirical peak in the nuclear 

binding curve of Figure 2 and the 99.9710%  match to the 56Fe binding energy and an 
understanding of how this relates to quark confinement and nuclear binding and to the toolkit 

masses um , dm , u dm m  and the foregoing divided by ( )
3
22π .  This then exploded into the 

plethora of empirical matches enumerated in section 6 culminating in the neutron minus proton 
mass difference in (3.2) which was then elevated into a primary relationship and used in 
combination with (3.1) to deduce the very precise up and down quark masses (3.3) and (3.4).  
And this further led once the Fermi vev Fν  and the CKM mixing matrix are brought to bear, to 
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the proton and neutron masses themselves within all experimental errors.  So it is abundantly 
clear that (8.8) and (8.9) can be connected tightly with and indeed are the springboard to a whole 
wealth of nuclear energy data, and thus are empirically-accurate relationships to high degrees of 
precision.  But there is only one problem: to get from (8.6) and (8.7) to the empirically-validated 
(8.8) and (8.9) we employed / 4 45θ π= = ° .  But from the definitions (8.1) and (8.2) and the 
quark masses  (3.3) and (3.4) which are one of the consequences of (8.8) and (8.9), we found that 
θ = 24.381 777 8°, not 45°.  So what do we do? 
 
 We defined θ in (8.1) in a manner which ensured based on the current quark masses (3.3) 
and (3.4) that it would be equal to θ = 24.381 777 8o.  But as we see from (8.8) and (8.9) and all 
the development in sections 5 and 6, it is / 4 45θ π= = °  which in fact matches the empirical 
data.  So if θ so-defined does not match the empirical data, but if we also now know that the up 
and down quark masses do mix over a circle with a hypotenuse radius 

2 2 5.386 90110 MeVu dm m mζ = + =  and that u dm m  is in general multiplied by the factor 

( )
3
2sin cosθ θ  which specializes to ( )

3 3
2 2sin cos 1/ 2θ θ =  for / 4 45θ π= = ° , then that means that 

we need to retain the mass mixing over the circle with mass radius mζ  but change (rotate) the 

definition of our angle to match the empirical data.  That is, the empirical data suggests that we 
are correct that there is a mixing of the up and down masses via a mixing angle, but are incorrect 
about how we defined this angle in (8.1).  So we now need to redefine our angle to match the 
empirical data.  How? 
 
 In addition to θ, let us introduce a new angle ϕ, defined such 0φ =  when the current 
quark masses are (3.3) and (3.4).  That is, we define 0φ ≡  to be the mixing angle associated with 
the 0Q =  current quark masses (3.3) and (3.4).  So likewise by implication, 0φ =  is the 
associated angle for all of the empirical data developed and enumerated in sections 3 through 6.  
Then, because (8.2) and (8.3) teach that there is a rotation occurring between the up and down 
quark masses which maintains a 5.386 9011MeVmζ =  hypotenuse, we shall define ϕ by way of 

the mixing relationship: 
 

( )
( )

( ) ( )
( ) ( )

( )
( )

cos sin 0

sin cos 0
u u u

d d d

m m Q Q Q m

m m Q Q Q m

φ φ
φ φ

′    =
≡    ′ = −    

 . (8.10) 

 
As specified, for 0φ =  this definition produces u um m′ =  and d dm m′ =  which are also the Q=0 

quark masses.  This now replaces the definition of θ in (8.1), which we now withdraw in favor of 
(8.10).  There is, of course, still a rotation between the quark masses of the exact same form 
produced by (8.1), and 5.386 9011MeVmζ =  is still maintained as the hypotenuse of rotation.  

But we are no longer tied to a tan θ = 0.453 236 693 and θ = 24.381 777 8° which is a mismatch 
with the empirical data.  In fact, as we indicate above and will shortly elaborate after some 
further mathematical development, both θ and ϕ need to be understood not as fixed angles, but as 
variable angles with run with Q , i.e., as ( )Qθ  and ( )Qφ , which thus help to specify the 

behaviors of all of the empirical data previously developed as a function of Q for Q>0, including 
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the running.  Most directly, ( )u um m Q′ =  and ( )d dm m Q′ =  now specify the running of the up 

and down quarks masses as a function of the renormalization scale / impact energy Q.   
 
 Now, with the definitions (8.1) and thus the constraint θ = 24.381 777 8° no longer in 
force, we revert to (8.6) and (8.7) keeping in mind that / 4 45θ π= = °  leads to (8.8) and (8.9) 
and many correct empirical matches.  So we now define / 4θ π φ≡ +  as the general relationship 
between θ and ϕ in each of (8.6) and (8.7), which is to say, we simply define ϕ to be equal to θ 
less 45 degrees.  Via basic trigonometric angle addition formulae we find that  

( ) ( )1
2

sin / 4 cos sinφ φ φπ + = +  and ( ) ( )1
2

cos / 4 cos sinφ φ φπ + = −  and therefore that 

( ) ( ) ( )2 21
2sin cos sin / 4 cos / 4 cos sinθ θ φ φ φ φπ π= + + = − .  Consequently, we may use 

( ) ( ) ( )
33 3 22 2 2 2sin cos 1/ 2 cos sinθ φθ φ= −  in (8.6) and (8.7) to write: 

 

( )
( )( )3

3
2

23 1
eff 0 eff 0 eff 02

2 2cos sin
1

Tr 4 4
2

V P V P V P d u d uE d x F F m m m mµν
µν φ φ

π
= ⊗ = + − +∫∫∫ , (8.11) 

( )
( )( )3

2

3
2

3 1
eff 0 eff 0 eff 02

2 2cos sin
1

Tr 4 4
2

V N V N V N u u d dE d x F F m m m mµν
µν φ φ

π
= ⊗ = + − +∫∫∫ . (8.12) 

 
Now the empirically-supported (8.8) and (8.9) are more transparently visible, and when 0φ = , 
these will reduce identically to (8.8) and (8.9). 
 
 Now that we have simply use a different angle ϕ rotated clockwise by 45° from θ in the 
formulae for eff 0V PE  and eff 0V NE  to translate (8.6) and (8.7) into the more-transparent (8.11) and 

(8.12) we could, if we wish, go back to reintroduce the withdrawn definition (8.1) slightly 
differently, by defining yet a third angle η  in the form of 1sin cosd um m mη η≡ ≡ , with the 

consequence that tan /u dm mη =  and η = 24.381 777 8°, compare after (8.3).  This η is a 

different angle from / 4θ π φ≡ + , and it does specify the empirical /u dm m  ratio for the Q=0 up 

and down current quark masses.  Then, if we wanted to ask how this η definition transforms as 
function of / 4θ π φ≡ +  both of which run as function of Q and indeed are parameterizations of 

Q, we would transform 1sin cosd um m mη η≡ ≡  to 1sin cosd um m mη η′ ′ ′ ′ ′≡ ≡  and use (8.10) to 

substitute um′ , and dm′ .  Thus: 

 

2 2 2
sin cosu d u d

u d

m m m m

m m mζ

η η= =
+

 (8.13) 

 
now replaces (8.2), and η = 24.381 777 8° which is the magnitude previously assigned to θ from 
the initial definition (8.1).  To relate back to the redefined angle θ we may then also use 

/ 4φ θ π= − , apply the angle difference identities and consolidate.  All this teaches that: 
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( ) ( )
( ) ( )( ) ( ) ( )( )1 1

2 2

sin cos sin cos

cos sin sin cos sin cos

sisin cos sin co csn os

d u d u

d u u d

d u d u d u d u

m m m m

m m m m

m m m m m m m m

η η η η
φ φ η φ φ η

θ θ η θ θ η

′ ′

+

′ ′= ⇒ =
′ ′= − = +

′ ′= − = + −+ −

 (8.14) 

 
Therefore, the mass ratio angle η transforms η η ′→  with changing ϕ and θ and so also runs with 
Q according to: 
 

( ) ( )
( ) ( )

coscos sin
tan

sin

cos
tan

cos s s ni in
u d d uu u u d

d d d u d u d u

m m m mm m m m

m m m m m m m m

θ θφ φη η
φ φ θ θ

− + +′ +′= → = = =
′ − −+ +

 (8.15) 

 
All of the foregoing assignments of the angles ϕ, θ and η and their interrelationships of these 
angles with one another as well as with the quark masses um  and dm  and the circle radius 

2 2
u dm m mζ = +  and the renormalization energy Q  as will be discussed further momentarily, 

are illustrated in Figure 3 below: 

      
Figure 3: First Generation Quark Mass Mixing 

 
 Finally, to complete this development so we may turn from mathematics to physics, we 
may also use (8.10) in (8.11) and (8.12) to represent the transformation of the proton and neutron 
energies with Q, ( ) ( )eff 0 eff 0 eff 00V P V P V PE E E Q′→ =  and  ( ) ( )eff 0 eff 0 eff 00V N V N V NE E E Q′→ = : 
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,(8.16) 
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( )
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.(8.17) 

 
Similarly, we may even examine how the electron rest mass em E∆=  in (7.17) a.k.a. (5.3) a.k.a. 

the primary relationship (3.1) transforms e em m′→  with ϕ.  Here, we just use (8.10) in (7.17): 

 

( )
( )

( ) ( )
( )

( )

( )
( ) ( )( )

3 3
2 2

3
2

3 3
0

2 2

3
cos sin sin cos

2

e d u e e d u

d u

m m m m m Q m m

m m

π π

φ φ φ φ
π

′ ′ ′= − → = = −

= − − +
, (8.18) 

 
 So now we can finally go directly to the relationships (5.1), (5.2) and (3.1) which were 
the springboard for all of the other empirical connections outlined earlier.  We start with um  and 

dm  which by definition are the 0Q =  quark masses which also by the definition (8.10) 

correspond to 0φ = .  So we first ask: what happens when we set 0φ = ?  By (8.10) u um m′ =  and 

d dm m′ =  and so (8.16) through (8.18) immediately reduce to: 

 

( )
( )3

2
eff 0 eff 0

1
4 4

2
V P V P d u d uE E m m m m

π
′ = = + + , (8.19) 

( )
( )3

2
eff 0 eff 0

1
4 4

2
V N V N u u d dE E m m m m

π
′ = = + + , (8.20) 

( )
( )3

2

3

2
e e d um m m m

π
′ = = − . (8.21) 
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These are the foundational relationships upon which all of the empirical connections in sections 
5 and 6 are based. But there is still a rotation which can occur through a non-zero angle φ  which 
first appeared in (8.3) as / 4θ π φ= +  and in the more general case, the 0Q =  quark masses 

rotate via (8.10) through a circle with a mass hypotenuse mζ , the proton and neutron and 

electron energies transform via (8.16) through (8.18), and the mass ratio angle η  transforms via 
(8.15).  Now let’s briefly review what we learn from (8.1) through (8.21), and then let’s talk 
about the broader physics within which all of this fits. 
 
 By noticing that the ( )2 2/u d u dm m m m+  term which first emerged in (7.18) is analogous 

to a like-term ( )2 2sin cos /W W w y w yg g g gθ θ = +  which emerges in electroweak theory once we 

specify sin cosw W y Wg g eθ θ= = , we are noticing that there is a similar type of mixing occurring 

between dm  and um  via some angle θ as there is between wg  and yg  as there is via the 

electroweak mixing angle Wθ  in electroweak theory.  In (8.3) we see how this mixing enters in 

the form of the ( )
3
2sin cosθ θ  factor.  But we see in (8.8) and (8.9) that / 4 45θ π= = °  is the 

specific angle which matches the empirical data, which contradicts the definition (8.1) from 
which we deduce θ = 24.381 777 8° from all of the empirical evidence reviewed earlier.  So 
something must give, and in science, empirical validation certainly takes precedence over how 
we first define an angle.   
 

To reconcile both ends of this seeming contradiction, we separate the appearance of 
sin cosθ θ  in (8.6) and (8.7) from its connection (8.2) to the quark masses because the 
empirically-accurate results differ from (8.6) and (8.7) simply by a rotation in the definition of 
the mixing angle against the quark masses.  In other words, we treat sin cosθ θ  as being 
independent of its original moorings in (8.2), and allow it to be redefined so long as the 

redefinition takes place somewhere on the circle of radius 2 2
u dm m mζ = +  which we now know 

exists mathematically.  So we retain the rotations with radius mζ  which we are tipped off about 

per above, and use a new angle / 4φ θ π≡ −  to define rotations from the observed current quark 
masses via (8.10) which then enters (8.11) and (8.12) in a fashion that is more transparent in 
relation to the empirical nuclear springboards (8.8) and (8.9).  The original ( )2 2/u d u dm m m m+  

which tipped us off to all of this now is redefined in (8.13) in terms of a new η = 24.381 777 8° 
angle.  But let us see what we surmise about these angles themselves, because there is some 
interesting physics here, and because this bring us back full circle to the start of this paper when 
we first asked whether there was some sensible way to define Q=0 masses for the up and down 
current quarks when the current quarks are confined and so can never be directly observed 
without applying a Q>0, and indeed, a QCDQ > Λ . We established how this could be done with 

the Electron, Proton and Neutron (EPN) scheme in section 4, but have never gotten to the 
question – even with Q=0 masses properly established – of how these masses might run as we 
move up the Q scale. 
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 When we first defined θ in (8.1), we were defining a simple ratio tan /u dm mθ =  of the 

up quark to the down quark mass at Q=0.  There was nothing in this definition which might tell 
us how these masses run with Q.  But we also saw in (8.3) and especially (8.6) and (8.7) that 
there is some mass mixing going on.  And we know that in the two other known instances of 
mass mixing – via the weak mixing angle Wθ  and via the CKM quark and lepton mixing 

matrices (see (6.13)) – these angles are understood to be running functions of Q.  So we should 
suspect that the angle θ in (8.6) and (8.7) is a function of Q as well, and need to be alert for ways 
that this mixing might enter these equations.  The empirically-driven need to withdraw the 
definition (8.1) and replace it with (8.10) solves two problems at once, because it enables the 
angles to be defined in relation to the masses so as to match up with the empirical data and at the 
same time it takes advantage of the rotation first noticed from ( )2 2/u d u dm m m m+  to explicitly 

start with the EPN-defined ( )0um  and ( )0dm  quark masses and then rotate them to 

( )u um m Q′ =  and ( )d dm m Q′ =  and thus gives us a way to understand how these masses and 

indeed all of the empirical data might run with the energy scale Q.  This is highlighted especially 
by (8.15) in which we have defined η to replace what was the original role of θ right after (8.1) 
as the arctangent of the up-to-down mass ratio.  We see in (8.15) that η is a running ratio of the 
quark masses, but is not the driving parameter as to running with Q.  Rather, it is ( )Qφ  and 

( ) ( )/ 4Q Qθ π φ= +  which directly drive the running.  So the redefinition to match the empirical 

data also spawned a running ratio angle η which runs with Q but is not the underlying parameter 
for running, and θ and ϕ which are in lockstep with one another and are the underlying driving 
parameters for the running of everything else.  We do not in this paper seek to ascertain how, 
precisely, these angles θ and ϕ run with Q.  We merely wish make clear that they do. 
 
 One other point needs to be noted as well.  The fact that the up and down quark masses 

are rotated via (8.10) as a function of ( )Qφ  suggests that 2 2 5.386 90110 MeVu dm m mζ = + =  

is an invariant of this rotation, i.e., that ( ) ( )0m m Q mζ ζ ζ′ = =  at all Q.  And we have mentioned 

on several occasions in this section that mζ  is the hypotenuse of this rotation, i.e., the radius of 

the circle of rotation.  But we need to be very careful, because out discussion here is limited to 
the first quark generation with contains the up and down quarks.  When we expand our view to 
the second and third generations and the CKM mixing of these generations, we must keep in 
mind that the CKM angles ( )12 Qθ , ( )13 Qθ , ( )23 Qθ  and phase ( )Qφ  are also expected to run 

with Q, and can also shift mass from one generation to another.  So if we rewrite mζ  by 1mζ  to 

denote that this is the mass radius / hypotenuse for the first generation rotation, one should 
consider the prospect that there are two other 2mζ  and 3mζ  radii for the second and third 

generation with some presently unknown relationships among all of them.  (See, however, 
section 3 of [6] which discusses the Koide relationships which provide the best insights known to 
date for how to characterize the inter-generational empirical fermion masses, and relates these to 
matrices displayed here in (5.1) and (5.2) which are also another way to express (8.19) and 
(8.20).)  And one should expect that as Q increases, not only does the angle η = 24.381 777 8° 
change, but so too does the 1mζ  radius.  Thus, as among the three generations, we might envision 
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three circles of radii 1mζ , 2mζ  and 3mζ  such that as the angles 1η , 2η  and 3η  are rotated, so to 

do the radii shift, and as one or two of the radii expand, the third one contracts, all in some 
presently unknown interrelationship.  So these are less circles than spirals, which likely converge 
in some way at GUT and higher-Q scales. 
 
9. Conclusion: A Century and a Half after Maxwell, Protons and Neutrons 
and other Baryons are Finally Understood to be Yang-Mills Chromo-
Magnetic Monopoles  
 
 What we have detailed in sections 8 and 9 is that (7.2) for eff 0F µν , which is obtained as a 

direct deductive consequence of the thesis that baryons are the chromo-magnetic monopoles of 
Yang-Mills gauge theory, is the theoretical expression which provides the “interface” to be able 
to make empirical predictions.  One then uses (7.2) in 31

2 TrE F F d xµν
µν= ∫∫∫  to be able to 

deduce energies, and after a full test calculation using a Gaussian ansatz explained after (7.14), 
and the discovery and interpretation of inter-generational mixing between the up and down 
current quark masses reviewed in section 8, one arrives at (8.19) through (8.21) which form the 
basis for the broad range of empirically-accurate relationships developed and enumerated in 
sections 5 and 6.  This is how the theoretical results captured in eff 0F µν  connect to formulations 

which can be used for empirical validation via certain predicted energies driven by the current 
quark masses.  So in effect, this paper has now shown the manner in which (7.2) for eff 0F µν  leads 

to multiple empirical concurrences with a range of nuclear energies which have never been 
known before.  So now, working backwards, we come to the final question as to the theoretical 
origins and foundations for eff 0F µν  in (7.2). 

 
 The fundamental starting point is to recognize that in classical Yang-Mills theory, there is 

inherently a non-vanishing net flux 0F ≠∫∫�  of a “magnetic field” across closed surfaces, as first 

communicated in [5.6] of [1] and thereafter reiterated in [3.3] of [10].  This is in contrast to 

electrodynamics for which 0F =∫∫�  and so there is no net magnetic flux across closed surfaces, 

so that while electric fields terminate at an electric charge, magnetic fields are aterminal closed 
loops.  As was initially made clear in [2.4] and [2.5] of [10], when expressed in differential 
forms, just as ddA = 0 in electrodynamics where A is the vector potential / photon one-form, 
DDG = 0 in Yang-Mills theory where G is Yang-Mills vector potential one-form which in 
chromodynamics becomes associated with the gluon fields.  So formally speaking there are still 
no elementary magnetic monopoles in Yang-Mills theory either.  But when taken in the integral 
formulations of Gauss and Stokes, there is a non-vanishing “faux” monopole 

[ ] [ ], ,P id G G i dG G′ = − = −  which arises exclusively as a composite object via the non-

commuting nature of Yang-Mills theory which does not exist in electrodynamics ([10] states that 
P idGG′ = − ; this is an error which will be corrected before this paper goes to formal 
publication).  So when expressed in integral form there is also a non-vanishing 

[ ] [ ], , 0F i G G i dG G= − = − ≠∫∫ ∫∫ ∫∫∫� � , and so these magnetic field analogs do net flow across 

closed surfaces.  In electrodynamics everything commutes, so the analogous expression  
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[ ] [ ], , 0F i A A i dA A= − = − =∫∫ ∫∫ ∫∫∫� � , and that is why classical Yang-Mills theory gives us 

0F ≠∫∫�  while electrodynamics gives us 0F =∫∫� .   

  
 So if one believes in Maxwell and one believes in Yang-Mills as correct, empirically-
validated theories of nature, then because their logical combination inexorably leads to a faux 

magnetic charge density [ ] [ ], , 0P id G G i G dG′ = − = ≠  and an associated 0F ≠∫∫�  which do not 

appear in Maxwell’s theory alone, one must believe that these 0P′ ≠  and  0F ≠∫∫�  exhibit some 

manifestation in the physical universe.  The only question is how these are manifest.  The 
author’s fundamental thesis is that [ ], 0dG G ≠∫∫∫  manifests as a baryons, and 

[ ],F i G G= −∫∫ ∫∫� �  manifest as the meson and energy fluxes in and out of baryons, for example, 

through all of the nuclear binding and fusion energies reviewed in section 6 here.  It is the field 

strength F appearing in 0F ≠∫∫�  which eventually becomes the eff 0F µν  for which we then 

calculate energies 31
2 TrE F F d xµν

µν= ∫∫∫  for both the proton and neutron.  And it is from these 

energies that the empirical connections elaborated throughout this paper ultimately then emerge. 
 
 So now the question becomes how to “populate” these non-vanishing faux monopole 

entities [ ] [ ], , 0F i G G i dG G= − = − ≠∫∫ ∫∫ ∫∫∫� �  with quarks and show that they manifest as 

baryons.  Referring back to section 7 here, while the a) Maxwell and b) Yang-Mills get us to 

these net-flowing magnetic fields 0F ≠∫∫� , it is c) Dirac theory and d) Dirac-Fermi-Pauli 

Exclusion which when deductively combined with a) and b) demonstrates that  these entities 
have the correct color attributes of baryons and mesons.  This was originally communicated in 
section 5 of [1] and was later elaborated in section 9 of [10] so as to establish all of the non-
linear features of these monopoles, and at the same time show the monopole behaviors in the 
abelian limit as discussed following (7.1) here.   
 

Briefly, while the classical field equations for Yang-Mills electric charges 
* * *J D F D DG= =  ordinarily express the current density J as a function of the gauge field G 
namely ( )J G , it is desirable to invert this field equation to instead express G as a function of J, 

i.e., as a function ( )G J .   In this way, by what is effectively a merging of both of Maxwell’s 

classical field equations into a single equation (“merged Maxwell”), one can then advance the 

monopole entities to ( ) ( ) ( ) ( ), , 0F i G J G J i dG J G J   = − = − ≠   ∫∫ ∫∫ ∫∫∫� � .  But by Dirac, we 

know that current densities may in turn be expressed in terms of fermion wavefunctions ( )J ψ , 

via Jσ σψγ ψ= .  So now ( ) ( ) ( ) ( ), , 0F i G G i dG Gψ ψ ψ ψ   = − = − ≠   ∫∫ ∫∫ ∫∫∫� � , and the 

monopole entities contain fermions.  How many fermions?  In the abelian linear approximation, 
each faux monopole entity contains precisely three fermion eigenstates.  At bottom, this emerges 
from the fact that the faux magnetic charge density P′  is a differential three-form.  So if this 
monopole “system” contains precisely three fermion eigenstates, then by the Exclusion Principal, 
we must place these fermions into three distinct eigenstates.  So we use the gauge group SU(3) to 
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enforce exclusion, and now the only question is what to name these distinct eigenstates.  So we 
choose R, G and B, call this color, and now the SU(3)C color group of chromodynamics naturally 
emerges as a corollary to merely combing Maxwell, Yang-Mills, Dirac and the Exclusion 
Principle together all at once.  The rank-3 of the monopole three form converts over into the 
dimension-3 of the gauge group, and SU(3)C is seen not as a fundamental theory but as a 
corollary theory rooted in Merged-Maxwell-Yang-Mills-Dirac-Exclusion.   

 
Once color is assigned, as first communicated in section 5 of [1] and thereafter in section 

10 of [10], the faux monopole three form P′  has the R G B∧ ∧  color symmetry of a baryon and 

the ( )( ) ( )( )eff 0 0
Tr 0 Tr , 0iF G Gµν µ ν Σ = Σ    entity has the color wavefunction BBGGRR ++  of 

a meson.  And in equation [10.4] of [10] for ( )( )eff 0
0F µν  where this BBGGRR ++  meson 

wavefunction first becomes clear, reproduced earlier as equation (7.1) here (see also [5.6] of [1]), 
we also obtain the starting point for connecting the theory to its means of empirical confirmation 
by calculating the energies 31

2 TrE F F d xµν
µν= ∫∫∫ .   The very same equation which reveals to us 

the mesons which flow in and out of baryons and hold together the nuclei, also gives us the basis 
for quantitatively studying the energies which fuse and bind the nucleons into nuclei. 
  
 The one other important finding which emerges in the process of all this, is that because 
of the non-linear features of Yang-Mills gauge theory, when we attempt to express G as a 
function of J, we are unable to obtain a simple ( )G J  except in the abelian limit of Yang-Mills 

gauge theory.  In general, G is a function not only of J, but also of itself, ( ),G J G .  So if we are 

looking for an expression ( )G J  which does not self-feed via ( ),G J G , then as first detailed in 

section 8 of [10], we need to treat ( ),G J G  recursively.  We feed ( ),G J G  into itself as many 

times as we wish – anywhere from zero times to an infinite number of times – and then cut off 
any further feeds by setting a perturbation V to zero.  Doing this “zero times” expresses the 
abelian limit.  In the other hand, self-feeding an infinite number of times is the behavior ascribed 
to nature.  For human beings and their computers doing non-linear calculations to some 
acceptable level of precision, one would recurse a finite number of times, whether 1 or 2 or 5 or 
10, etc. and then study those results.  So this recursive approach enables us to as detailed in 
section 9 of [10] to describe these baryon monopoles in terms of their natural condition with 
infinite recursion, and to also take the abelian limit of zero recursion, as well as to do in-between 
calculation and analysis.  The empirical connections we have developed here to nuclear binding 
energies are all developed from the zero-recursion limit, which informs us that the observed 
nuclear binding and fusion energies are expressing abelian “signals” from the nucleons which 
need to be “decoded” as in sections 5 and 6 to teach us about the “nuclear genome.”  On the 
other hand, the complete proton and neutron masses and the constituent / contributive quark 
masses discussed in see point 11 in section 6 tell us about all of the non-abelian “noise” which 
then overlays upon these signals in the infinite recursion limit to exhibit the observed properties 
of nucleons as complete nucleons. 
 
 It will be appreciated that all of the foregoing makes use only of the classical Yang-Mills 
theory.  We have not yet discussed or resorted to quantum Yang-Mills theory, which because 
Merged-Maxwell-Yang-Mills-Dirac-Exclusion implies SU(3)C, means we have no yet resorted to 
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QCD, but only to classical chromodynamics.  So while one might approach the empirical 
questions we have laid out in sections 5 and 6 here under the assumption that they cannot be 
explained except by a quantum field theory, the result here reveal this to be a false assumption.  
All of the empirical results enumerated in sections 5 and 6 are based on classical, not quantum 
Yang-Mills theory!  Classical field theory has more “juice” than it is given credit for in this day 
and age.  But when we finally do wish to study quantum Yang-Mills theory which via Merged-
Maxwell-Yang-Mills-Dirac-Exclusion means quantum chromodynamics, the recursion just 
discussed is an indispensable element.  For, when we finally bring Feynman-path integration into 
the mix as laid out in point e) near the start of section 7, we run into the long-standing 
mathematical problem of how to analytically and exactly calculate a path integral for a non-
linear classical field theory, which in the context of scalar fields is the so-called 4ϕ  problem.  As 
demonstrated in section 11 of [10], this recursion is the precise aspect of Yang-Mills theory 
which enables us to finally overcome this important problem and perform an analytically exact 
path integration to prove the existence of a non-trivial quantum Yang–Mills theory on R4 for any 
simple gauge group G, see [24] page 6.  
 

Once this is achieved, it is possible to obtain the quantum field equations of Yang-Mills 
QCD which are [13.21] of [10], and thereafter, to derive the running QCD curve of Figure 1 
within all experimental errors, see section 18 and especially Figure 14 of [10].  So in the simplest 
terms, QCD may now be thought of as no more and no less than Merged-Maxwell-Yang-Mills-
Dirac-Exclusion-Feynman, where it is Feynman via path integration that finally takes a classical 
chromodynamic theory which properly explains a wide range of nuclear energy data including 
confinement when expressed in terms of nuclear energies as in point 1 of section 5, over to a 
quantum QCD theory which explains the running QCD curve which is the fundamental quantum 
evidence of confinement.  All of this, combines to provide overwhelming evidence that the non-

vanishing flows 0F ≠∫∫�  of chromo-magnetic fields across closed spatial surfaces in Yang-

Mills gauge theory, are in fact synonymous with the existence of baryons, including the protons 
and neutrons from which all of the atomic nuclei are constructed. 

 
 During the century and a half since Maxwell and Heaviside first taught that there are no 
magnetic monopoles in electrodynamics, these monopoles have been an endless source of 
fascination for physicists wondering whether the natural world contains some form of magnetic 
monopoles, and if so, what form those monopoles might take.  At the same time, although 
Rutherford and Chadwick established the existence of protons and neutrons almost a century 
ago, and while protons and neutrons and their other baryon cousins have been well-characterized 
since, there remains to date no convincing theoretical explanation of what a baryon actually is 
beyond it being some confining bound state of three quarks teeming with gluons and highly-non-
linear quantum interactions.  Rabi’s immortal quip, “who ordered that?” remains an unanswered 
question for protons and neutrons, to this very date.   
 

The answer to Rabi’s question is that the protons and neutron and other baryons were 
ordered by a deductive combination of Merged-Maxwell-Yang-Mills-Dirac-Exclusion-Feynman, 
with the exclusion principle being the combined effort of Fermi-Dirac-Pauli.  The cast of 
characters who placed this order, and the highly-settled and thoroughly-validated nature of the 
theories which they used to do so, make clear that the author’s thesis that baryons are Yang-Mills 
chromo-magnetic monopoles is a highly conservative thesis, grounded in a combination of some 
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of the most fundamental, widely-accepted and extensively-tested scientific theories.  To believe 
and accept this thesis requires nothing more than a belief that all of these theories are correct, and 
a belief that when mathematics is correctly applied to combine input component theories which 
themselves are also correct, the result of that mathematical combination will be equally correct. 
 

So it is with great irony that when future generations look back on the century and a half 
from Maxwell’s time to the present time during which scientists passionately pursued magnetic 
monopoles, they may chuckle in irony over the fact these monopoles were mocking our efforts 
and hiding in plain sight all along, as the protons and neutrons at the heart of the material 
universe. 
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