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Abstract: It is widely believed that Dirac magmethonopoles and their related electric charges
must be quantized, and that any fractional chamss might posit cannot exist without creating
forbidden observable singularities. Here, we eifiyi present a vector potential for a Dirac
monopole with fractional magnetic and electric alpes whose curl is a Coulomb magnetic field
and which potential has no observable singulariti®e then demonstrate how these fractional
charges are projected onto SO(3) from topologiaalering groups with generators which are
the generalized throots of the 2x2 identity matrix |, situated ativas Euler angles on the
complex plane of the covering group generatorswéhout observable singularities. We also
show how this projection gives rise to a form otlilean transformation between space and
time which preserves the invariance of the Minkargkerval £-r? in the geodesic coordinates
of flat spacetime. Finally, we show that althougactional charges are permitted without
observable singularities, these fractional denortors are naturally restricted by helicity
considerations to the odd integers 1, 3, 5, 7... taedeven integer 2, while other even number
denominators 4, 6, 8... are precluded, which is malgithe same charge pattern observed in the
Fractional Quantum Hall Effect (FQHE).
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1. Introduction

In 1931 Dirac [1] discovered that if magnetic des with strengthg were to
hypothetically exist, this would imply that the elec charge strengté must be quantized. The
relationship he found, often written @sg= n wheren is a positive or negative integer or zero,
came to be known as the Dirac Quantization CondifiaQC). In the mid-1970s, to remediate
the fiction of Dirac’s “nodal lines” which subsequly became known as Dirac strings, Wu and
Yang [2], [3] developed an approach which achiewespletely equivalent results “without
strings,” with the only difference being that it éast in the more-modern language of fiber
bundles. In the Wu Yang approach, one usesd(@auge theory to obtain the differential
equatione™ de" = Reg@ (to be derived at (4.2) infra) wherk is the gauge (really, phase)
angle andp is the geometric azimuth about the z-axis in tred dimensional physical space of
the rotation group SO(3). This equation is easdgn to be solved for constant electric and

magnetic charge strengths byp(iA) = exdi 2gg) (at (4.3) infra).

It has long been believed that the only solutiotthie latter Wu-Yang equation which is
free of observable singularities, Beg= n (at (4.7) infra). This is in fact true if (as Whe
discussed in section 5 infra) one neglects thetfedt spinors also change their “version” when
rotated over &7r circuit on SO(3) (see section 41.5 of Misner, Tiwoand Wheeler’s [4]), and
also neglects the existence of roots of unity gaioes (section 6 infra) which likewise modify
the electron version. But if we fully account fttrese version changes including a careful
consideration of roots of unity it becomes possitdeexpand this solution to include non-
singular fractional charges of the forBeg= n/ m wherem is a second integer specifying the
fractional charge denominator (at (11.7) infra)hisTpaper will detail how these fractionally-
charged monopoles, and their related fractionalisbectric charges, may arise without
observable singularities. What is especially gumg is that the singularity-free denominators
are not permitted to take on any integer value.th&a considerations of helicity and charge
continuity require restriction to the denominatars=1,2,3,5,7,9.,, which are precisely the
same fractional charge denominators experimentdlserved in the Fractional Quantum Hall
Effect (FQHE) [5].

PART I: A REVIEW OF THE GAUGE THEORY OF DIRAC MONOPOLES
2.  Local U(1)em Gauge Transformations, In General

We begin by considering a first electron wavefumcty, (x¥) which is related to a
second electron wavefunctiap (x*) by the local U(1g» gauge transformation (throughout, we
shall employ natural unitd =c=1):

@, -y, =exp(iNy, =y, (2.1)
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where the phase angle(x”) varies locally as a function of the spacetime dowtes as do the
wavefunctiongy(x*). Transformation (2.1) is often written simply @s— ¢’ = exp(i/\)l,l/, but

by placing the labely, on ¢ and theny_ on ¢_=y.,, we lay the foundation for easily
introducing the “north” and “south” gauge patchestudy monopoles starting in section 3.

Next, we define a gauge potentidl ,(x“) to be an electromagnetic vector potential
corresponding with the wavefunctiapi,, and we then use this to define the gauge-covarian
derivative D, , =0, +ieA , wheree is the (running) electric charge strength, andrettiee sign

of ieA , is positive because we are using a Minkowski rnetmsordiag(fyw) :(1,— 1- 1 )

versus the oppositely-signed convention. Applytinig derivative to each side ekp(iA)y, in
(2.1), we obtain:

D, (exp(in)y.)=(a, +ieA , ) ( exd{in)y.)
=i0 Aexp(iN)y, + exp(iN)d 4, +HeA, , exfin)y, . (2.2)
=exp(in)[ 0,4, +[ieA, +i0,A . |

Based on the inner-bracketed expression in theoimotine above, we define a second,
transformed gauge potentidl , = A | corresponding with the wavefunctigh according to:

eA,=eA, +0, /. (2.3)

Then, defining a second covariant derivatvg, =9, +ieA ,, (2.2) simplifies to:

D, (exp(iA)w,) = ex(in)[ 0, +ieA , Jw, = exiA)D_up, . (2.4)

The foregoing represent a fundamental propositibriocal gauge theory: the local gauge
transformation (2.1) acting on a fermign must be compensated by the introduction of a gauge

fields A, transforming according to (2.3) in order to maimtgauge invariance of the

electrodynamic Lagrangian and its related field atgums. The logical consequence of this
proposition is Maxwell’s electrodynamics.

The gauge transformation (2.3) may readily be dsithrough by and rewritten using
the mathematical identitid, A =™ " as:

A,=A,+e"0, & i (2.5)

Further, one may generally pack a vector potetia@ the differential one-formA= A dx’.
Therefore (2.5) compacts and rearranges into:

2
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A-A=e"d&/ i (2.6)

This tells us that these two gauge fields and A, differ from one another by no more than a
U(1)em gauge transformation, which is apparent becaussetiare just relabeled names for the

one-formsA and A’ transforming according té&\ = A+ € d& / ic. Therefore, these two gauge
fields are not observably-distinct.

3. A Coulomb Magnetic Field which is the Curl of a Vector Potential,
i.e., a U(1)em Magnetic Monopole

The electromagnetic field strength two-forﬁ1:%Fde”d>( is generally related to the
vector potential byF =dA, and so is a locally-exact two-form. Extractire telectric /
magnetic bivectorF, , the space components of the field strength teasoF; =0, A -0, A.
The magnetic field vectoF; =-¢&, B* where & Is the antisymmetric Levi-Civita tensor and
&,,=+1, and where B :B:(BX, B, BZ) in Cartesian coordinates.  Likewise, using
diag(nw) =(1-1-1-) to lower indexes in A*=(gA) :(qo,AX, A, A), and  with
0,=0 =(ax,ay,az), this means thaF, =-¢, B“=0,A -0, A , or B=0OxA. So whenever

we have F =dA in general for a given potential, the magneti¢dfiB will be the curl of the
vector potentialdxA..

Now, by way of reviewing known monopole physicg, us define the two four-vector
potentials in A and A, of the last sectiorsuch thatthese are the potentials forGoulomb
magnetic fieldB which is the curl of these vector potentidBss= %A, that is, let us now define
the gauge potentials for a magnetic monopole. Wi by simply postulating a form for these
potentials, then showing that these do in fact aépce a Coulomb magnetic field with
B=0OxA.

We start by positing a (running) magnetic chargengjthg for such a monopole, and
then postulate each of the potential one-fonsand A, in a spherical coordinate basis to be:

g(cosf - 1) dg

g(cosg+ ) dg (31)

A,
A

Confining our domain tdd< @<, A is “northerly’” because it is defined everywhere except
for =11, i.e., except due south of the origin, whike is a “southerly” potential defined

everywhere except fof =0, i.e., except due north of the origin. Often thesereferred to as
the north and south gauge patchés,= A and A, = A, and we see via (2.6) that these differ

from one another simply by a gauge transformation aratesmot observably-distinct. We now
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show that these will indeed produce a Coulomb miagifield for which the curlB =0xA for
both of the vector potentials,, A _.

First, we holdy constant,dg =0, that is, we do not lgj run over the region of spacetime

in question. Now, because differential forms getmynteaches thatdd =0 in general and thus
ddg =0 in this specific setting, this all means that:

F=dA = dA = gdcosd & . (3.2)

Therefore, for either potential, the magnetic fi@8a=0xA, =0xA_ is the curl of the gauge
potential, as desired.

Of course,dF = ddA = ddA =0 via the same identityld =0, which means thaE is

closed and locally exact. But it is not globalkaet. Specifically, if we integrate (3.2) over a
closed two-dimensional surface wighstill held constant, and if we also apply GausStakes’
theorem, then:

” dF :#F :ﬁ)gdcosedyﬁ: gfon dco&9J'02” @#= gcod ¢ =- # ¢ (3.3)

The fact that we are holding constant throughout the spacetime region of thegmation is
reflected by our having movegloutside the integral after the third equal sigove Now let us
specifically pinpoint the magnetic field.

To do so, we consider the circumstance under wthiehelectric fields vanish, that is,
under whichF, =~F,=E=0. In this circumstancefp F = p4F,, dx“dX = {f4 F dx dx.

2 jj

Then, using this in (3.3) also in view &f =-¢&, B*, we find that:

{pF=qp1F,ax¢dX =¢p F,dk dk+fp B dk dk+ff E ok de~fpBES=-47 . (3.)

So from the final equality above, this means that:
{pBES=4m9= 141, (3.5)

where = 4rrg is defined as the total magnetic flux across tbheed surface. Conversely, the
magnetic charge strengh= x// 477 represents the steradial density of magnetic dlcross the
closed surface. This, of course, is Gauss’ lawnfagnetism in integral form, but with a non-
zero magnetic fluxy across the closed surface. Thus, this is thgratéormulation of Gauss’
law for a non-vanishing magnetic monopole. Becahsewas arrived at using=0 in (3.4),
(3.5), there are nelectric fields induced by this monopole, and as a re¢8I§) describes this
magnetic monopole at rest.



Jay R. Yablon
JULY 9, 2015 DRAFT

Now, in general, Coulomb’s law cannot be derivexhf Gauss’ law alone. However, if
the magnetic monopole is stationary — which it éeduseE =0 in (3.4) and (3.5) — then the
magnetic fieldB in (3.5) will be exactly spherically symmetric. sAa result of this spherical
symmetry, we may remo\& from the integrand in (3.5), thus writing:

B@dSzBMm%Mg:y. (3.6)

Because of the spherical symmetry, only the razbatponentB, of B will be non-zero, that is,
in spherical coordinates, we will haB= (Br, B;, Bg) :( B ,0,0). Therefore, (3.6) now yields:

B,:r%=47/7’rz. (3.7)

This is indeed a Coulomb magnetic field which hgsamstant) magnetic charge strengttand
for which the total magnetic flux across any closedface isy=4mg. Furthermore, this

Coulomb magnetic field is the curl of the vectotgrdials,B =0xA, =0xA_. Consequently,

we have completed our review of how the potenpalstulated in (3.1) do in fact specify a non-
vanishing Coulomb magnetic field with =[x A .

Now, we begin to examine the full set of conditiemgler which this Coulomb magnetic
monopole withB =[x A does not give rise to any observable singularities

4, Conditions under which the U(1)em Magnetic Monopole has No
Observable Singularities: The Standard Dirac Quantization Condition

Returning to (3.1), we first find that the diffe:
A-A=29dp. (4.1)
Combining the above with (2.6) then yields the Wanry [2], [3] differential equation:
e dé"/ ie=2 g@p. (4.2)
This differential equation is solved for constamtnd constar, i.e., forde=0 anddg =0 by:
exp(in) = exdi 2gg), (4.3)
as is easily seen by plugging (4.3) back into #fieHand side of (4.2) then reducing.

We next employ this solution to operaten, which combined with (2.1) yields:

W, - . =y_=exp(iN)y, = exdi Bgo)y, . (4.4)
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Clearly, for ¢ =0, we havey_ (OF¢,. Now, let us move this wavefunction through the

Coulomb magnetic field of (3.7) around a closedveun the azimuthal direction, going from
¢ =0 to ¢ =2m. When this single circuit about the monopole asnplete, from (4.4) with

@ = 2T we obtain:

W, - =y, =exp(iN)y, = exdi 4e9)y, . (4.5)
Now let’s turn to the question of observable siagitikes.

To avoid observable singularities, it is requitlkdt the electron wavefunction @t= 27
be the same wavefunction as it is at the geoméirickentical azimuthg =0 on SO(3), in other

words, that it have the single valug, (0) - ¢, (27) =y, (0) and not multiple values at the
same azimuthal orientation on SO(3). This requaeimvill be satisfiedf and only if

W, - =y, =exp(iN)y, = exdi 4eg)y, = Y, = expi an)y,, (4.6)
which, with1= exp(i 27n) wheren is a positive or negative integer or zero, megasd only if
2eg=n=1,2,3,4.. (4.7)
Using g = i/ 4, this may alternatively be expressed as

eu =2rmn. (4.8)

These are two different but equivalent ways ofisgathe standard Dirac Quantization Condition
(DQC). From (4.7), we see that the electric chatgength is quantized in units e=3 n/ g,

and reciprocally, that the magnetic charge strersgtfuantized in units oy =3 n/ e.
With condition (4.7) imposed, (4.4) becomes:
Y, - =y, =exp(iN)y, = exding)y, , (4.9)
which contains the implied quantized relationship:
A=ng (4.10)

between the phase angle and the azimuth angl¢ . So during the course of traversing a
circuit from ¢ =0 to ¢ =2m, (4.10) tells us that what Dirac often refers to[i] as the
observable ¢hangein phase round” a “closed curve” becomes:



Jay R. Yablon
JULY 9, 2015 DRAFT

A, =27 = 271, 47,67 ,87 .., (4.11)

where we use thé subscript to make clear that this isteangein phase, not an absolute phase.
In other words, keeping in mind that only a chamgephase but not an absolute phase is
observable, (4.11) tells us that the change ing@basr a single closed azimuthal circuit must be
an integral multiple of2/7 in order to avoid observable singularities. Beeaall phase angles

with A =27m have identical orientation and magnitude in thenglex phase space defined by

exp(iA) = cos\+i simM=a+ib, (4.11) tells us that to avoid observable sindtidsr as
specified by (4.6), the phase difference mustge=27m whenever the electron returns to its

original azimuth orientation. For purposes of digion, we shall refer to thi&, =27m phase
difference with like-orientation for the initial drfinal phases as a “return to phase.”

Using the quantization condition (4.7) we may liyaeturn to (3.1) to write the
monopole potentials as:

(4.12)

It is sensible that for charge strengths which are tigeth the associated potential energies will
likewise be quantized as above.

All of the foregoing summarizes the present-day undetstgnof U(1), magnetic
monopoles and the quantization conditideg= n of (4.7) which is understood to be required if
these monopoles are to exist without observable Erigas. But there are other charge
conditions which may also exist without observalahgglarities. These will be the focus of the
remainder of this paper.

PART II: DIRAC MONOPOLE CHARGES WITH HALF-INTEGER FRACTIONS

5. Tidally-Locked Electron Wavefunctions and Half-Integer Fractional
Monopole Charges based on Wavefunction Version

In the derivation of the Dirac Quantization Conditjast reviewed, there is an unstated
assumption that the electron wavefunction, over tgrse of its circuit about the monopole
from ¢ =0 to ¢ =2, it not itself undergoing any rotation. But now let examine what
happens if the electron itself rotates in a “tidal loekth the monopole as it traverses the
monopole (as the moon does when it traverses the sacththat the far side of the moon is
never visible from earth), so that in the course of trangrfom ¢ =0 to ¢ =27 about the
monopole the electron also rotates througsn via the rotation group of SU(2) which is the
universal cover of SO(3). This is important for two reasdrisst, this will establish that a half-
unit magnetic chargeg= n/2 can also exist without observable singularities.cofd, this
will provide the template for showing in sections Idl how additional fractional charges
may also exist without observable singularities.

7
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We start with the three 2x2 Pauli matriags of SU(2), posit three associated angfes
in the physical space of spacetime, and form theicea U, =exp(ig.§ /2 which are unitary,
U'U =1, given thato' =0 are Hermitian, whichU, matrices describe rotations through
respective angleg =6,,6,,6, about each of the x, y, z axes. It is well-knawaw to use the

seriesexp(ix) = I+ix -4 x* =i x*+4 x*... together with the fact that,*" =1, and 0> =g,
to flesh out these unitary matrices, each of whiakdetU, = 1 into the well-known:

elj_(cos(el 19 i sir(6, /3]

U, = eXp(lalf - isin(Hl /2) 00{91 /3

U, =exp(‘02%j:[f§;(g;2 //2) <:S<|>rs((Z //?)J .
US:exp(iJS%jz(COS(Hg /Z)Bi sifg, /2 ot /3_? site, /J

:(exp(iég 12 0 ]

(5.1)

0 exp(-i6; /2

Continuing with the natural units=c =1 let us next consider an electron traveling with

velocity S =v along the z axis and thus the Lorentz contractammor y=1/1-v*. As is
often done, we may then define the boost parametesky = y and sinhy = )3, and write the
Lorentz transformation as the hyperbolic “rotation”

t R t' _ cgshx sinhy \( t ' (5.2)
z V4 sinhy coshy )\ z
Several of the points to now be developed are foné], amidst pages 36 to 42.

The electron wavefunctiog is a four-component Dirac spinor which we can deriy
Y= (ET,/yT), whereé ands are each two-component spinors with all componiengsrelated
via Dirac’s equation(iy"aﬂ—m)gl/ =0. Under a transformation (5.2) defined by the Inbze

group SO(1,3), which includes a general bopsand spatial rotation through on SO(1,3),
these spinor components will transform on SL(2 & pading to:

”- @ —"//' :U;j _ {exp(ic Eﬂg—ix) 12 el [Q90+ix) /3}@ , (5.3)
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where 6 =0, are the 2x2 Pauli matrices. So for a non-relstiwi electron withy - 0
undergoing simply a rotation without boost, thimgiifies to:

”- (gj qw, :(gj :£exp(i<(s)m 12 eXp(mom /z)j(fj N exp(.6 gg_jw =l M@, (5.4)

where | ,, is a 2x2 identity matrix. For an azimuthal rotatibnough &, =¢ about the z axis
only, this becomegy — ¢’ =1, Dexp(io [y =1 ,,0U 4, for which the unitary matrixJ,
is explicitly given by the third relation in (5.1) Wwité, replaced byg. Thus, (5.4) for an
azimuthal rotation only will operate identically upeach of the two-spinor§,7. So foré:

FoU- exp(m zj £005(¢ /Z)J(r)l sin(¢ /13 o /3_? o /;J(:i:j (5.5)

and likewise for whem replacesé. The need to consider the spindrsand ;7 together in the
four-component Dirac wavefunctiap' = (fT,/yT) arises because these are interchangedn

under parity, but when the boost is removed the oveyaks well as each of and 7 will
transform in identical fashion. We finally consolid#te operation (5.5) on botf,7 into one
expression, using thg¢g — ¢, labelling of (2.1), as such:

¢, ¢ ( ¢j
X ! |y O @, =1, 0U @,
o ~{E]-01[ oo o 10

:[Cos(f/’ /2)? " cog(¢ /31? sirfg /?]{jj:[ eXéﬂg ’ ex@i; /)J[’jj

with the = signs denoting the respective operations on eaclpaoemt of ¢, =(<(+A,<‘+B) and

(5.6)

N :(/7+A,/7+B). This is a more explicit form of (5.4) for an azimuthakatmn with
60 =0,0,=04, also adopting the labelling of (2.1).

Now, let us return to the gauge transformatign — ¢, =exp(iA)y, of (2.1) and

contrast this against (5.6). As already noted, nowting Dirac from page 63 of [1], “the value
of [the phase] at a particular point has no physiocghmmg and only the difference between the
values of [the phase] at two different points is of anportance.” So, if we are comparing
phases as between two different azimuthal points (forntherelativistic electron presently
under examination), then we should also inquire wihethe electron has been rotated at all
when moving from one such point to the next. If trecebn has not rotated but the phase has

changed, then the transformation will e — ¢, :exp(i/\)gl/+ from (2.1). Conversely, if the
electron has rotated but the phase has not changed, the transformation will be

9
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W, -, =1, expliog Iy, from (5.6). But, if both the phase has changedthe electron

has rotated, then the complete transformationbela combination of the operations from both
(2.1) and (5.6), namely:

W, - @, =1, 0Uexp(iN)y, =1 ,0 exp{i 0'3%) exp Ay, =I ,,0 ex{asgw\jl/g (5.7)

With (5.7) we are now equipped to ask what happktise electron makes a complete circuit
about the monopole throughzar azimuthand simultaneously does so in a tidal lock with the
monopole and so also rotates throh, all on SO(3).

To avoid observable singularities, as in sectiorwd, must still have a single-valued
electron after the fullsr circuit is complete, that is, we must still haye =, (277) =y, (0).

But now, the condition required to avoid a singitjawill be given by, =¢, with ¢ =27 in
(5.7), that is, by:

W, -, =1, 0expliogm) exdi Ay, =1 ,0 exp(gr+N)y, =l .3, exb & )y,.(5.8)

This will be recognized as an eigenvalue equatiog) 0 expi (g,7+A) =1, exdi 2n))y, = (

for the phase differenca,, wherel ,, is the 4x4 identity matrix, and of coure exp(i 2m)
for all integeran.

But in this particular case we can deduce from)(@igh ¢ /2= that exp(io,) = -

so thatl exp(i 0'377) =-1 4, which produces a sign reversal. Therefore, withO and ¢ =27
explicitly denoted, (5.8) can be reduced to:

@.(0) - ¢, =y, (2m)=-exg(iN)y, =y, (0, (5.9)

So to avoid an observable singularity when thetedactraverses the monopole in a tidal lock,
given, mathematically, thatl= exp(in( 4 - ])) and in contrast to (4.6), we must now have:

exp(iN)y, =-y, = exr(i m( - ).)l//+. (5.10)

As a result, for the tidal-locked electron, (5.1€l)s us that after a singl2/7 circuit the change
in phase will be:

N, =n(2n-1)=7,37,51,77 ., (5.11)

which is an odd-integer multiple af, contrast (4.11) which is an even-integer multgfier.

10
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Most importantly, if combine (5.10) with the Wu-Ygequation (4.4) also obtained from
a single 27 circuit about the monopole, that is, if we comb{Bel0) with (4.4) forg =27, we

now obtain:
exp(in)y, = eX[:(IIT n- ;L) = exfi @yp)y, = exp eq)y, . (5.12)

From exp(in(Zw— ]))(,1/+ = exfi 4eg)y, above, we may finally extractr(2n-1)= 4reg
which reduces to:

269=N-3=3.3:3:% (5.13)

for n=1,2,3,4,5.. Contrasting the usual DQ@eg= n of (4.7), we see that to avoid
observable singularities for a tidally-locked eteat which rotates in synchronization with its
circuit about the monopole, we must now have a ®gaantization condition for which the
charges ardalf-integer charge fractions that skip over theolghinteger charges If we then
merge (4.7) for an electron that does not rotatetigal lock) with (5.13) for an electron that
does maintain a tidal lock during its circuit abtiué monopole, we may combine these together
to write a fractional DQC which includes half-ineggelectric and magnetic charges, given by:

2eg:%; n=0,1,2,3,4.... m= 1, (5.14)

precisely as was stated in the opening paragragiso$ection. Now, let’s step back and discuss
what has happened here.

We see from (5.4) that a Dirac electron houses $pimors &, 7 which transform
identically under pure rotations sans boost. MWal-known, as elaborated by Misner, Thorne
and Wheeler (MTW) in their classic exposition attem 41.5 of [4] that a spinor changes its
sign every time it undergoesZar rotation, and only regains its original sign atiet/r rotation.
We discuss this by saying that an electron chartgéversion” after a2/ rotation and only
recovers its original version aftelzr. MTW analogize this version change to the ma@psc
and entirely classical “orientation-entanglemertiépomenon wherein an object connected to its
environment by a set of threads will only regam ariginal state of entanglement after it is
rotated twice overdsr, but will have an opposite entanglement followongy a 277 rotation.
But it is not necessary here to use this macroscamalogy. Equation (5.9) makes clear that at
the quantum level, the sign of the electron wavetion will invert following a 277 rotation and
only be restored aftedsr, and this is because &-angle rotation on SO(3) is implicitly
accompanied by a half angf 2 rotation on SU(2). (This exact connection willlegiewed in
section 8, see (8.10) through (8.12) supra.) Thange in version is seen most directly by using
U, with &, = ¢ to operate orf as such:

ot a0
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so that wheng =2 this will becomeU,(27)¢é =-¢ but when ¢ =47 this will become
U,(4m)é =& . Numerically, this is encoded in the denominato? first appearing in (5.3), due
to the projective two-to-one, double-covering, hameophic mappingr: SU(2) - SO3), and
when the complete Dirac theory is taken into actoulkewise to the mapping
:SU2,C) - SL,3). This double covering produces a two-valuednesshe sign of a
positively-signed electron wavefunction rotatednirgg =0 to ¢ =27k depending on whether
there are an even number of cycles 2,4,6,8.. in which case the sign remain positive, or an
odd number of cyclek =1,3,5,7.. in which case the sign flips to being negative.

So what is really happening with the odd-integeres /7 phase change of (5.11) and
with the half integer Dirac charges of (5.13),hattthe phase change must compensate for any
wavefunction version change which might take plasé¢he electron traverses a circuit about the
magnetic monopole, such that when the electrorrngtto its original azimuth by going from
=0 to ¢=2m, there are no observable singularities. Becaudmladly-locked electron
wavefunction will invert its sign after a7 circuit about the monopole, and because we require
a single-valued wavefunction as betwegger 0 and ¢ = 277, we must compensate this version
change with a shift in the phase change in ordeensure that there are no observable
singularities. Thus, the phase change shifts Hyaheycle, fromA, =27,4/7,67,87 .. in (4.11)

for an electron which does not rotate during itswit, to A, = 77,377,597, /.. in (5.11) for an
electron which does rotate in a tidal lock with tm@nopole. Then, because the Wu-Yang
solution exp(iA) = exf(i 2gp) of (4.4) in turn relates this phase change toctierge strength
product 2eg, the net consequence is that the electric and eti@grharge strengths now become
quantized in the half-integer unigeg=4+,32,3 % ... of (5.13), rather than the whole integer units
2eg=1,2,3,4.. of the standard Dirac condition (4.7). This saift “phase / version

synchronizatiofi wherein the phase must synchronize itself to pensate any wavefunction
version changes in order to avoid observable sariigds, then becomes the foundation of
fractionalized electric and magnetic Dirac charglesessence, this synchronization compensates
for the two-valuedness of the double coverSU(2) - SQ3) to ensure that there are no

observable singularities after any giv2mr cycle, which in turn owes to the fact that SURhi
simple group while the double-covered SO(3) is not.

The example just shown with half-integer electmd anagnetic charge fractions is just
that: an example. As stated at the start of teatien, this establishes that half-unit magnetic
charges2eg= n/2 can exist without observable singularities, anid thill later provide the
template for showing in sections 10 and 11 how tamul fractional charges may also exist
without observable singularities. As we shall nstart to demonstrate, this phase / version
synchronization can be generalized to permit fometiized Dirac charges without observable
singularities forany integer denominatom=1,2,3,4,5.., and not merely for then=1,2
denominators of (5.14), but considerations of litgliand charge continuity will restrict these
denominators to onlgddintegers in addition to the even integer 2 alresttywn above.
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PART III: ROOT OF UNITY TRANSFORMATIONS ON SO(2), THEIR
TOPOLOGICAL MAPPING ONTO SO(3), AND THEIR CORRESPONDENCE TO
THE HEISENBERG EQUATIONS OF MOTION

6. Euler Angles in the Complex Plane, and Root-of-Unity Generators
and their Primary Properties

As we shall now demonstrate, the 2x2 Pauli magrigeof the simple universal covering
group SU(2) of SO(3) represent a special case affante set of 2x2 generator matrix triplets
we denote asg; ; i =1,2,3 associated with covering groups we denote3§g). Specifically, in

the same way that the Pauli matrices are consttustteh thato,” = 0, =¢,> =1 and therefore
may be thought of as the “square rootg"= (Ii )l/2 of a triplet of 2x2 identity matricef , these

n/m

7, may be thought of as the generalizell roots of the identity triplet,, namely, (1,)"" for
1<n<m, wheren andm are integers. Of course, for=m we will recoverl, = (Ii)m/m which
is the identity matrix triplet, and fon>m we simply recyclead infinitumthrough the(li )”/m
for which 1< n<m. If we then utilize the left scrippﬁG(Z) to denote the covering group(2)
associated with any given set @f)"", and if we likewise denotér, =(1,)"", then according
to these notational conventions the Pauli matriges ,7, = (1, )l/2 and the universal covering

group SU(2) = 1 G(2).

The starting point for developing these “root ofty” generators 7, = (Ii)”/m emanates
from pure mathematics, via the Euler relation far generalizech™ roots of unity:

G = (1" = exgis = eXFEi 2,%): cc{s ;2%} +i s(n 72—:1) 6.1)
=exp(i 27Q) = co§ 2Q)+i sif 20Q)

Above:
n

3 =2m1— = 21n1Q (6.2)
m

is the Euler angle in the complex plane and we@sen/ m to denote a number selected from
the infinite set of rational numbers, i.e., a geotin/ m. We shall also find it convenient to
represent the infinite set of irrational numberggas
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What we now need to do, mathematically, is realgryvsimple: Whereas (6.1)
represents the roots of the scalar number 1, thieedie' 7, = Q}’fn = (I : )"/m represent roots of the
2x2 identity matrixdiag(1)=(1,3. So these are just an extension of (6.1) fomimaber 1, to

the triplet 1, of 2x2 identity matrices, whereby we require therespondencer, = ;7. =(1, )1/2.

Now, let us find, 7, =g/1," =(1,)"", explicitly.

Starting with (5.1), it happens that with a judies choice of these anglés we can
cause each of thed¢ to be identical to the correspondiag up to an overall constant factor.
Specifically, if we choose each of these angles shat 8 = 77, we readily see that:

U1(7T/2):exp(iogfj{cos(”/3 iSidn/ajzi(i (1)j=i0l

2) \isin(rr/2) codm /2

Uz(n/2):exp(iazgjz(_c;z((];//az) ;');7;//3}:(_01 é}zi[io _(;j:iaz (6.3)
Us(n/2):exp(iasgj=(cos(ﬂ/3+i sir{ /3 0 )j:i(l sziag

0 coy7r /d-i sifm 2 0 -
Consolidating, we see that (77/2) = exp(ig; 7 / 2 =ig; in general, which we rewrite as:
o =-iexp(ig /)= cogom |3+ sifgm /. (6.4)

So we can now square this expression, and becadsel,, we can write the identity
matrix triplet |, as:

l,=(<) exp(igm)=(4)*[ cofgm)+ sifgn)]. (6.5)

We deliberately danot turn (—i)2 into -1, because when we later take square rdotisisy we

want to recover alone, and not extraneously introduce a two-valded/-1. Of course, the
identity matrix taken to any integer powers still the identity matrix(li)n =1,, so the most
general expression for this triplet of identity nags is:

L=(1)" =(4)"expiom)=(4)"[ cofgm)+i sifgm)]. (6.6)

Now that we have the identity matrices represkmtethis form, it is an easy matter to
obtain their generalizea™ roots,(li)"/m. There are simply:
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ro= (Ii)% =(- )27;1 exp(i aiﬂ%j =(4 )zr:[ co{ai HTI:J + sirEai n—rnnﬂ (6.7)

This is the explicit expression for thig, = (Ii)”/m that we sought to obtain.

It is also helpful to use the Euler formulatien=exp(i 37 /9 to write:

(<) =exp(i 3m /m), (6.8)

and then use this in (6.7) to write:

T :exp(i QTEJ exp{iqﬂﬂJ = exéi I3n—nj eﬁ)qn—nn_ﬂ = e>E'|o7T—n I ‘3+0‘)j' (6.9)
m m m

After the second equal sign we simply introduce2k2 identity matriced, into exp(i Im /m)

which multiples the 2x2exp(ig;7m /m). Becauseg;, and I, are both matrices, we must be

attentive to their commutation, because the Bakemibell-Hausdorff and Zassenhaus

. -(A%72)[x,Y] (Ar6)2Y X X
formulae inform us thate’™0 = e gAY dA /A [REEVI X XD oo o general rule

wheneverX andY are matrices. Here, howevdr, is the identity matrix, S(EIi,aj ] =0, and

thus the simple rule®™ e*" = &** Y for scalar exponents may be applied. This is vehables
us to obtain the suml 3+ g; in the final expression.

As a test, to confirm that (6.7) correctly cormasgs to the square roots bf, we may set
m=2 in (6.7) to obtain:

o1 =(~i)"exp(igym 12)=(-i)" cogom 13+ sifgm 1P (6.10)

Referring to (6.6) we see that, =1, for n=0,2,4,6.., which recovers the identity matricés
which trivially represent one set of square rodtthe |, themselves. And referring to (6.4), we
see that,7, =¢ for n=1, while (6.7) shows that for successive=3,5,7.. the sign flip in

(-i)" is precisely offset by a flip iexp(ig;/m /2), so thatyr, = ¢; for n=1,3,5,7.. generally.

We now make use of the Euler andgle= 27m/ m= 271Q) of (6.2) to reparameterize (6.9)
in terms ofJ, and so may write:
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n

1(9)=ir =)0 =exfi 2 exfior 2 )= exfi £ +a1)|

=CO{§(3i +o—i)j+i sir(%( B +07)j

So the roots of unity arél)“/m =expid as in (6.1) while the roots of the 2x2 identitiplet, in

(6.11)

contrast, ardl,)"" =exp(i (9 /2 (3, +5,)) as seen in the above.

The universal cover SU(2) has the generatgrs ,7, just discussed following (6.10). If

we want an easy way to think about this, we carplimsen=1 andm=2 in (6.2) to find that
d=r, in other words, thav;, =7,(77). So in terms ot?, the SU(2) generators are spotted at

d =7 in the complex plane, and we immediately know then we square these generators,
we will double the angle, and thereby end up wittriglet of identity matricesl, spotted at

J=2m. Then, when thinking about the other root germesgatt is easiest to simply think about
the angle at which those generators are dispoddwe non-trivial cubed-root generators, for
example, will be at? =120°,240, so that when cubed they will yield eithér=360,720
which in either case are a triplét of identity matrices. For the fourth root the rtoial
generators will be spotted &=90°,180 ,270 and when raised to the fourth power will yield
J=360°,720 ,1080 with a |, triplet. The pentuple generators will be at

J=72°,144 ,216 ,28t and when raised to the fifth power will again reso an integer
multiple of 360° with I,. And so on.

Consequently, the Euler ang®=27m/ m when used in (6.11) provides a very powerful
vehicle to cut through all the algebra of thesd mmvering groups, and think about these groups
and their operations very simply in terms of oriions and rotations of the Euler angteon

the unit circle in the complex plane in which thengrators, 7, =7,() are spotted. From this
view, the SU(2) group ob, is a universal cover because any other set ofrgtre including
the unity matricesl, can be obtained merely by rotating the angle ek¢hgenerators from
J =17 to the pertinent rational multiple &6C , i.e., to any and al# = 2rm/ m= 21Q.

When we wish to explicitly calculate (19) for a specific =27m/m, the formulation
7, () =exp(i 3 /2 exfiod /2 in (6.11) provides the simplest path to do so.e Tatrix
exp(iogd 12 is easily calculated by replacing each of thein (5.1) with #. Then, we simply
multiply the exp(ig;@ 1 2) result byexp(i 3% / J for all of the r; to obtain:
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oDl 2
7,(9)= exp(i%j exp{i o, %] = exéi gj( cog(9 /3 sir( /aj (6.12)

2 )\ -sin(#12) cod¥ /3

r,(9) = exp(i %) exr{i o, %] _ (exp(oi 29) exp?iﬁ)j

To obtain explicit roots of unity, for simple anglsuch as? =27m/3=n[120 with m=3
or §=2/m/4=n®C with m=4 one can draw suitable triangles and obtain ¢ogiisite sines
and cosines in terms of roots of integers. Buthasfractionalm in & =27m/m become larger
integers, it becomes difficult, and in many casepdssible, to draw a regular polygon and then
start manipulating subset triangles. The prefegederal approach, which can be usedafoy

fraction m, is to instead write these roots &% =1 i.e., as the polynomial equatiafi—-1=0,
and then to find each of the values ofx which are roots of this polynomial. Of courseeaf
thesem roots is always 1 itself, s&—1=0 can always be factored out. It is then readilgnse
with this factorization that this polynomial may tesvritten as:

X" —1:(x"“1+ X2+ X+ 8+ K+ xlr])( 1) =( » ])Zln:;l %= C. (6.13)
So themr1 m™ roots of unity aside from 1 itself are generatiyrid by solving the polynomial:

>roxX =0. (6.14)

i=0

Of course, for largen, this is not a trivial polynomial to solve. But principle, this makes it
possible to find any and all roots that may be réelsi So, for example, for the cubed roots of

unity, the polynomial (here, quadratic) ix*+ x+1=0, which is readily solved as
X= (—1i V1= 4) /2= (— I+ i\/a /2. Via (6.1), the real part of whatever roots dogamed gives

the cos, while the imaginary part gives the sirhede in turn are readily inserted into (6.12) to
yield explicit matrices for any specified

Now let's explore the primary properties of thesetrof unity generatorg; (19) in
(6.12), specifically, trace, Hermicity, unitarityeterminants, and commutators.

We see that in general the traces of (6.12) are:

Tr(r,) =Tr(7,) =2exp(i 3 /2 cos /)Z.

Tr(z,) =exp(i 29) + exdid) (6-19)
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As just reviewed, the SU(2) generatars=r, (77), and indeed, the above become traceless, i.e.,
equal to zeroif and only ifwe setd = /7, and more generallyd = (2n—1)77 for integem.

Given o' =g and of coursd, =1,", the Hermitian conjugate obtained from (6.11) is:
T — . ﬂ
1" (9)=exp _IE(S‘ +a) |, (6.16)

which shows the, in general are not Hermitiam, # 7.". More explicitly, from (6.12) we find:

3:9)( cos(9 /9 —i sin(d /aJ

rl*(ﬂ)=exp(“— -isin(9/2)  cogd /3

;j[ cog(# /9 - sin(J “)j _ (6.17)

7, (9) :exp(—i7 -sin(9/2) cogd /3

£ (9)= (exp(—i 29) 0 ]

0 exp(i)

Comparing with (6.12), and given thailn(—@) =-sind, these will be Hermitianz, =7;" for all
d=-4, that is,if and only if# = 7m for integem.

It is, however, also easily seen from (6.12) andi{bthat these; are unitary,

A (6.18)

Only in the special cas# =/ in the first cycle, and for generalby:(Zn—l) ), are these,

both Hermitian and traceless. As already see(rn) =g, are simply the Pauli matrices.
As to the determinants of (6.12), it is easy talfihat for all ther, :
detr, (9) = exy(i ®)= exfi 2( 18 ). (6.19)

So for g, =7,(77), setting =77 above yieldsdetr, = exdi 3r)= exfinr)=- , as is of course
also to be expected. Noting that the unitary fotamatrices (5.1) for whicty,'U, =1, also

have detU, =1, we may also inquire what, have detr, =1. It will be readily seen that
detr, = 1if and only if 4 =27m/3=n120, i.e.,, Q =n/3, i.e.,, m=3, which corresponds with
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the cubed roots of unity. Specifically, for=3, the above becomegetr, () = exfi 2m) =

In all cases, howevedetr, will have amagnitudeof 1, that is|detr;|" = det;) ¥ det; ) =

Next, let us obtain the commutat({rs,,ri] for any givenr, (). First, working from
7, (9) =exp(i 39 /) exfiod /2 in (6.11) we construct:

(707 )= eXp'y){eXﬂS'U ij 'exéo’j%ﬂ- (6.20)

To evaluate this, it helps to also construct thmrmmltators[ui,uj] of the unitary matrices

GE2
RET

(5.1). This exercise is straightforward and yields

o) ]2 of8) 8, S
i 4] o] - e o) 80 3

g

/—_‘\\
==

g

N?,SD
N [

ot -2 47 o) 4

If we then setd=6 =6,=6, and also apply the half angkn’($/2)=(1- csd)/2, this
consolidates to:

[Ui,Uj]:{exp(iai gj ,ex;{iaj %ﬂ=— P Slﬁ( jq‘lkak =i ( co8-1)g, g, . (6.22)

Now, if we multiply through b;exp(i 39) , We arrive at the desired commutator (6.20):

[ ’ J exp|39){ [{Iq%j ,epz&(io*j %H =i exp{ ¥)( co8- )E, 0. (6.23)

It is then also possible to isolate; with some simple re-indexing and then revert via
1-cosd = 2siA(#/2). Doing so, we may obtain:

o, =4iexp(- ) cst(d/2) g, [ 1,7, . (6.24)

We see from (6.23) that thg () are not, in general, a closed group under muttgion
because their commutation reproduces, o, :%[ai,aj] scaled by the numerical factor
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exp(i39)(cos9-1). For cosd=1 aka. #=2m we have|r,7, |=0 because in this case

77
7, =1;, while for = 77(2n-1) we have%[r T, ] =ig, 0, which, because in this cage=0;, is

P75

just the group relatio%[ai Noy ] =ig, o, of SU(2). In this special case, thegroup is closed.

7. Spinors Transformed by the Root-of-Unity Generators

At this point, let us take the unitarity relatiafiz, = I, of (6.18) and combine that with
the determinantletr, ($) = exq{i #) of (6.19) to arrive at a basis for generally cdesing the
operation of these; on spinors¢. In the derivation to follow, we shall retracegpa 32-34 of
[6], but using the unitary, with detr, = exq{i #) in addition to the unitary; with detU, = 1.

First, we keeping in mind that # r," except for whend = 7m, we abstractly represent
any of ther; in (6.12) by:

r :(2 gj. (7.1)

However, because'r, = I, is unitary, we may multiply from the right byy™ to rewrite this in

terms of the matrix inverse as =7,

. Then, using the mathematical formula for theense of

a 2x2 matrix while also using/detr, = exp(—i 3‘) and also formingr," directly from (7.1),
this means that:

d -b d -b a ¢
r'=r7"= L =exp(-i 39) = : (7.2)
detr, \-¢ a -c a br o
Consequently:
d=exp(i3?)a*; c=-expiP)b* (7.3)

which permits us to write (7.1) in termsa&ndb only, as:

Ti:(i 3]:(—exp(?39)b* exp(ib39)a*J' 74

From this we find thatletr, =(a *a+ b* bexp( i3%). But we also know thatletr, = exf{i &)
from (6.19), fro which we deduce th|at2 +|b|2 =1, as expected, Witha|2 =a*a and|b|2 =b* b.
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Now, let us posit a spinof’ :(51,62) for which each ofé,, & are complex numbers.
This of course means thét =(&*, &,*). Using (7.4) to transforrg yields:

_<(1 ' <(1' _ _ a b ‘5(1 _ 351'*‘&(2
E_[EJ - _[EZ'J_M_(‘EXDU P)b* exdi F)a JL‘J‘[ exi{i F)(-b % +a *52)}(7-5)

This contains the two simultaneous equations:

b "fa‘tﬁb‘tz . (7.6)
& — & =exp(i ) (b & +a*s,)

Conjugating each of these and then reordering asstructuring somewhat, including
multiplying each side of the resulting equation®tigh byexp(i 39) then yields:

o1 99)(-&, ) =(a(-&,") +b&r7) _ (7.7)
exp(i F) & *= exp(i B)(b (=&, ) +a*éy)

This may then be cast using the exact same matiikeaone appearing in (7.5), as:

exp( 39)(:'2;*} - (—exp(??ﬂ)b . exp(ibﬁ‘)a j(-ézj | 7o

This means that th(a—{z*, &F )T doublet transforms under root of unity operatibgsr, in the

exact same manner as does the dOL(liﬂefz)T. This is a well-known special property of SU(2)
related to charge conjugation, for transformatiander theU, of (5.1). We see here that this
special property is maintained for tineof (6.12).

Next, we observe that:

_52* _ 0 -1 51* e N
[é*]_(l J(@*J* )= 79
Note that{ =-io, is a real matrix, with{ =¢* and " =-¢ and {?=-1. Taking the

Hermitian conjugate yields:

(¢6%) =(¢€) =(-¢& &) (7.10)
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As a result of (7.4) as well as (7.9) written afeo ¢&'*, we can compact the main
equalities in (7.5) and (7.8) to read as such:

§=r¢é
: 7.11
expli ) (06 4 =1,(¢¢) 7
The conjugate transpose of the above is then:
1t — Tt ot
=) =4 (7.12)

exp(-19)(¢€ ) = exe(~ )(c¢) =(r(¢€ 3) =(¢ ) v =(c&) 0"

Comparing the rightmost terms in these equatiorsseeé’ and (Zg‘)T both operated upon,
from the right, by the same’. The spinor-prime in the former cased$ and in the latter,
from the second term in the second equation, iexp(-i 39)(({')T. This means tha¢'’

transforms in the same manner as doesp(-i 39)(({')T, which we write as

&~ exp(-i 39)((5’)T. Then, we simply rename this to the unpringéd- exp(-i 39)({,5)T via
the inverse transformatiod’ — &. Finally, combining this with (7.10) as well asthwthe
explicit expressiord’ =(&*  &,*), we may finally write the end result:

E=(&* &*)~exp(-i39)(¢€) =exp(-i ¥) (=& &) (7.13)

In the circumstance whereletr = exf{i #)= : this reduces toé' ~ (ZE)T which will be
recognized as a known SU(2) transformation propssg, e.g., equation [2.45] in [6].

Now we are may begin to examine the effects ofdahest of unity transformations via
the unitary root of unity operators on the physical space of spacetime, how thesergeeo

fractionalized Dirac magnetic monopoles, and hoeséhrelate to populating a system with
multiple fermions in accordance with the fermionckssion Principle, using fermion states with
multivalued exclusionary quantum numbers.

8. Mapping Root-of-Unity SU(2) Spinor Transformations onto the
Physical Space of SO(3)

To examine how the transformations (7.5) act on dbserved, three-dimensional
physical space of SO(3), let us first multiply ttesult (7.13) from the right by to specify the

transformation relationship between the outer pebdnatrices&'é and (ZE)T{, while also
showing each matrix explicitly, as such:
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ffT:t:lj(fl* fz*){'gl' %ZJ

2 5251* |52| ) (81)
. T . Ctl . _5152 512

_ -39 = — 7 -, 1) = 3 2

ox-)¢(¢6) = ent= ) {6, €)= et 9 S5 5

Simultaneously, let us introduce the physical speserdinatesx :(x, y,z) of SO(3) and
contact these with the spin matricgs to form the very-recognizable matrix:

ka":( z X_iyj. 8.2)

X+iy -z

This is of course traceles§r(akxk) =0 and Hermitian g, x* :(akxk)T because itso,
generators are those of SU(2) for whigiho, =0 and g, =0,". Also, the invariant square
radial length of the rotation group SO(3)—is|et(akxk) =X+ yY+7="1.

Ordinarily, when we use the rotation generatord)(%vith detU, = 1, the analogous
result for (8.1) iséé’ ~E(Z{)T. This is becausé/detr, = ex;(—i 39) is removed in favor of

1/detU, =1 Then, one sets—E(Zf)T =0, x“ (note sign flip) to establish the connection

between the spinoré and the space coordinatgs which, for example, is implied by equations
[2.47], [2.49] and [2.53] in [6]. So the overalelationship for theU,of (5.1) is

~&&T ~ —f((f)T =0,x“. What is different about (8.1) is the new tetrhdetr; = exg{-i ).

Because|detri |2 = 1], this extra terms does not alter the magnitudangthing in (8.1). But it

does alter the direction of the unit vector in ttmanplex plane. So let us inquire about what
specific effects this term produces on SO(3).

The matrix &' on the top line of (8.1) is naturally Hermitianhish is to say that the
upper right and lower left matrix entriesé,* and &,¢,* are naturally, inherently conjugate to

one another, or precisely puﬁfz*:(fzfl*)* , by identity. At the same time, the matrix
E(Zf)T on the bottom line of (8.1) is inherently tracsle“s'r({(Z{)T) =(-¢$,+&¢£,) =0, thus

S0 too isexp(-i 39){(ZE)T , by identity. At the same time, however, theraashing in &' to
make this identicallytraceless nor anything inf((f)T or exp(-i 39)5(Z£)T to make these

identically Hermitian  Rather, it is the fact thafé"and exp(-i 39)5(Z£)T transform in the

same way under SU(2) which requires these eack twoth Hermitian and traceless. Thus, the
Hermicity of &' forces the condition —exp(-i3%)¢,? :( exy{-i @)ff) ' ak.a.
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&2 =—exp(i 69)({12) * onto exp(-i 39)5(ZE)T in the bottom line, while the zero trace of
exp(-i 39){(({)T forces the conditiofé;

|2 +|{2|2 =0 onto & in the top line.

Consequently, with these conditions that come benausesé’ ~ exp(-i 39){(({)T,
we now equate-exp(-i 39)E(ZE)T (again, sign flip) too, x in (8.2) which is both Hermitian
and traceless, and thereby combine both (8.1) &2Jl ifto:

2

~&&" :[_51‘51 —$:$, ]~ —exp(—i 39)5((5)T - exp{—i 3)[4(14(2 —¢, ]

_52"(1* _'5252* . 4(22 —$:$, . (8.3)
X+iy -z
Immediately, (8.3) enables us to deduce the folgwelationships:
x+iy=exp(-i3)&?; x-iy=—exf-i #)& ; z= exp-i 8)&4S,, (8.4)
from which it further follows that:
x=texp(-i®9)(&2-&7); y=+ exi{-i B)(&7+&7). (8.5)

For 4 =0 (8.3) to (8.5) reproduce the usual relations givej2.40], [2.47] and [2.53] of [6].

Now let us calculate how transformations under ribet of unity matricesr, (9) of

(6.12) act upon the space coordinates (8.4), (8.9he transformations upon the spinor
componentsé’ :(51,52) are given by (7.6). If we square each of thes# @so take their

product we obtain:

512 _ 51'2 — a2<(12+ b2{22+2aw£(2
&~ &2 =exp(i69)(b 2 &2 +a*?E, - 2a* b &) (8.6)

£t =01 9) e+ (o )b 1)

Then we substitute from (8.4) and (8.5) into (&®blirst obtain:
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x =4 exp(-i )( ) X =1 exd- |29)(£2'2 '2)
=1exp(i 39)(b ® &7 +a** &, - 2a* br £,) —lexp(-189) (€7 + BE )+ 2alf £ )
= exp(-i®)(&7+&7) - v =4 exif-i 3)(£2+£,?) NCE)

:%exp(i ) (b # &7 +a** &7 2a% b £F,) +Lexp(-189) (€7 + P, + 2ab& 4, )
z=exp(-i¥)&é, - 7= exi{-13)& ¢, =-ab gl + a2 +(| £ -| 6) ¢,

Then we further substitute the spinors from (849 the above, then reduce, to obtain:

X - >(=exp(i69)(%(a’2—b*2) x+—§(a*2+t‘f2) iy- & b }
+%(a2—b2) x—%(a2+ bz) iy— abz

y - y:exp(i69)(—i(a’2—b*2) ix+i(a*2+b*2) v & b i% : (8.8)
+1 ( bz)x+1(a+b2) y— iabz

2 2=exp(i®)((a*br ab) x( & b ab) iy(| B-| [B) |

The above of course is still an abstracted expedsased on (7.4) for any of the in
(6.12). But it is even more general than that;egample, it can also be applied to the rotation
matrices (5.1). While the unitary matrices are; =1, per (6.18) withdetr, (J) = exq{i &) per
(6.19), the rotation matrices (5.1) havgu, =1, anddetU, = 1. So, to apply these to thé of

(5.1), one would set all of the exponentials ir8)&o 1, yielding [2.54] of [6]:

X X=4(ad+a’-F-17) xi( d- a’+ B-?) iy( ab*a* iy

y - y:%(az—a*z—b2+ l:fz) ix+%( g+ &%+ B+ ’bz) y( ab*a*b . (8.9)
2. 2=(a brab) w(a b an) iy(| - ) 2

This would also apply ta;, any timedetr, = exdi &)= i.e., for$=27/3 and the successive
J= 27T(3n— 2) / 3 which differ from this by an integer multiple @&7. Then we obtaim andb
from (5.1) and plug those into (8.8). Doing exgatkiat usingu, from (5.1), reducing using the

double-angle formulaeos 2 = co$6- sind andsin 28 = 2sird cod, then putting the results
into the form of rotation matriceB, , we obtain the x-axis rotation:
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X X 1 0 0 X
X=ly|l-|Yy|=|0 cosf s, || y|= Rx (8.10)
z Z 0 -sing cod )\ z

Using U, in like manner yields the y-axis rotation:
X X cosd, 0 - simg,)( x

X=lyl-|y|=| 0 1 0 y|= R X (8.11)
z y4 sind, 0 co¥, )| z

FromU,, we likewise find the z-axis rotation:

X X cosf, sirg, X
X=ly|-|y|=|-sing, coss, 0| y|=Rx% (8.12)
z Z 0 0 1\ z

Comparing the half-angle§ in (5.1) with the whole angle§ in (8.10) through (8.12),
this demonstrates how it is that a rotation throdph2 on SU(2) projects onto a rotation of
twice the magnituded on SO(3). This is often summarized by the projecimapping
T:SU(2) - SA3). As reviewed in section 5, this is why an elegtmavefunction is not

restored to its original “version” after 2 rotation on SU(2), but requires4ar circuit to return
to version, as is known. This in turn is why fotigally-locked electron, the phase change goes

half a revolution off cycle\ = 7T(2n—1) as in (5.11) and therefore requires the half ietdyrac

charges2eg = n—3 of (5.13) in order to avoid observable singulesti This does not appear to
have been previously pointed out in the monoptéedture.

The above, (8.10) through (8.12) provide a chetkh@ correctness of (8.8). But they
also demonstrate explicitly why it is that the 22 matrices in (5.1) formed from the SU(2)

generatorso;, are said to be the generators of rotatidjs on O(3) which preserve as an
invariant, the radial length det(akxk) =X+ y'+ Z=r"in (8.2). Specifically, becaus®, are
real matrices and' contains real space coordinat&s) = R" and X" = X" . Further, it is easily
seen thatR' R = l) for eachR , wherel , is the 3x3 identity matrix, which is to say that
these R, rotations are unitary. As a result, using=(x y, 2" and x" =(x y,2 with an
explicit transpose that is often left implicit, asdmming over the space indewia %, the
invariance of the length® = x>+ y®+ z*> may be written as:

rF=sx™x - XX =r*=s X R" R k=5 %X x= %, (8.13)

26



Jay R. Yablon
JULY 9, 2015 DRAFT

12 _ . 2

that is,r? - r'?=r 2,

To develop an algebraic matrix-free formulation(8f13), we may use the Minkowski
metric tensor diag(77,, ) =(1~ 1~ 1 } for which the inverses,7” =J," to define the
covariant (lower-indexed)x =7 x' in the usual manner, and generally to raise ameero
indexes. Then, representing each of fhia (8.10) to (8.12) asy; with matrix indexes which
are the space indexes =1,2,3 such thatR“ R, =J'; (with the transpose oR, represented by

the reverse indexing dR* ), we may rewrite (8.13) algebraically, free of axplicit showing of
transpose§ or sumsZ, or matrix multiplications, as:

—r2=xx - XX =-r?’=xR R %= 0, k= xXx=-7%. (8.14)

Let us now apply the abstracted result (8.8) twhe# the root of unity generatorg(ﬂ)
obtained in (6.12), then form the results into ¢hreatrices designateB, with the uppercase
Greek letter Rho for “root” of unity. Applied tbé root of unity generatarl(zﬁ’), (8.8) yields:

X X 1 0 0 X
y|-|Y|=exp(i¥¥)| 0 cos sid| y|=PX. (8.15)
z Z 0 -singd cos? )| z

Likewise for 7, () we obtain:

X X cosd 0 - sin?)( x
y|-|Y|=exp(iz¥)] 0 1 0 | y[=P,X, (8.16)
z Z sind 0 cosf )| z

while for 7,(#) the transformation is:
X X cosg sing X
y|-|Y |=exp(i3%)| -sing cog y|=P,X. (8.17)
z z 0 0 1) z

To obtain (8.15) to (8.17) one first calculates viaeiousa andb-based coefficients of y, z in
(8.8), then reduces including using the double-@figimulaecos() = co$($ /2~ sif(s /P

and sin(J) = 2sin(& /9 cogd /. This shows the effects on the physical space850f the

27



Jay R. Yablon
JULY 9, 2015 DRAFT

transformation& - &' =7, of (7.5), using the expliciz; of (6.12). It is easily seen that
PP, =1, thus eactP, is unitary.

Comparing (8.10) through (8.12) with (8.15) thrbu@.17), it will be seen that the root
of unity Euler angle? =2/m/m transforms the space coordinates in exactly theessay as do

the rotation angles), with the sole exception of the factexp(i 39) = det, ($) (see (6.19))

which is an overall coefficient for each of the nes in (8.15) through (8.17). So there are
really two transformations embedded in (8.15) thiou@8.17): an ordinary rotation-like
transformation based ong in lieu of &, and a transformation resulting from

exp(i 3%) = cog @)+i sif 3) which is a complex number of magnitu*hxp(i 39)‘2 =1 that
acts equally on all three space coordinates butdaotes a complex number in the Euler plane.

Consequently, we may segregate the 3x3 matricessiges which have the effect of a rotation,
from exp(i3%), and examine the separate operationeap(i 3%) on each of the space

coordinatesx'. For all of (8.15) through (8.17), this effect is

X X
X - X' =exp(i3%)X = cog @) x+i sif 3) %= cdsH| y|+ <nIP iy|. (8.18)
z z

In the final expression above, we associate theyimaay i =/-1 with the coordinates rather
than the sin function from which it originates. 8@ 3x3 matrices in (8.15) through (8.17)
perform the usual type of rotations amoqg, z. But in addition — and what does not happen in
the ordinary rotations of (8.10) to (8.12) — tlayo simultaneously rotate into and among what
are seen to be imaginary space coordinatesg, iz.

This means that in general, the space coordinatese not always real, but can become
complex depending upon the particuld=27m/m used in any given circumstance. Further,

because they all contain the complex numqu(i 39) of magnitude 1, each of tH&, in (8.15)

through (8.17) contains complex elements. As aequence of all of this, the invariant length
element must now be defined using the Hermitianugate relation:

r’=sx™x - XX =r?=52xP.P k=5 X"x=r?, (8.19)

which also uses unitary relati®y'P, =1 . In (8.13) we haveR"= R and x" = X" because
R =R* and X =xX*, but in (8.19) we haveP,"#P," and x"# X" in general because
P, #P.* andx # X * in general. Thus, (8.19) is exactly the sameBdk3], with the exception

that theT operation is replaced by theoperation throughout.

The one change required to represent (8.19) ageiy in the form of (8.14) without
any explicit showing of conjugate transpose®r sums, or matrix multiplications, is for the
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lower-indexed space coordinatgsto be defined ag =7, x'* | so as to include the conjugation
of X, y, z coordinates which may become complex as seen(@dlB). Likewise, because ti

in (8.15) through (8.17) which we now index contraantly asP™ are also complex, we define
the lower indexedP, E/;kllyij'”‘* so as to also include conjugation. As a reshé#, unitary

relation P,'P, =1, becomes written a®“P, =J', using the algebraic, matrix-independent
notation. Consequently, we may rewrite (8.19) latgeally as:

—r2=xx - XX =r?=xP"P X = xJ, x= xx=-f. (8.20)

Having developed the indexed tensor notationsorenseded to summarize the complex
space coordinates (8.18), we now come to a verpiitapt question: what does it actually mean,

physically, to have space coordinatéswhich start out as real, but may then be transéoriny
a unitary factorexp(i 39) = exi{i 6n ) (see (6.2)) into complex coordinates?

9. How Root of Unity Transformations on SO(3) Correspond to the
Unitary Time Evolution of Quantum Heisenberg Matrix Operators

We found in the last section that when a spinonustiplied by a root of the 2x2 identity
matrix as in (7.5) and this is projected onto SQ(8¢ Euler angle for these roafs=2rm/m
not only rotates the, y, z coordinates through an angl®, but also transforms each coordinate
equally by X - X' =exp(i3%) %, as is seen in (8.15) to (8.18). The invariahtof SO(3) is
still preserved as seen in (8.20), but the spaoedamates on SO(3) become imaginary. Because
SO(3) is the physical space of direct material olegeon, it behooves us to find out what this
might mean physically.

Of course imaginary space coordinates, or at asiaginaryy coordinate, do appear
any time we write this invariant length asdet(akxk) =X+ y+7Z=1r, see, e.g., the

coordinately appearing in (8.2). But this imaginary coordinapgpears on SU(2), and by the
time a projections7: SU(2) - SA3) is made onto SO(3) these imaginary coordinatesger
have cancelled out via thé&i =1 multiplications which are endemic to multiplicatioperations
involving the Pauli matricegr,. For example, these no longer appear in (8.103.t®2) which
describe rotations on SO(3). So tilgeof SU(2) is not pertinent to understanding the mivgg of
the imaginary space coordinates in (8.18) and weadd this line of approach.

One might seek precedent for imaginary space coates found in Minkowski’s original
work [7] in which by treating time as an imaginapace coordinate, it became possible to
understand a Lorentz transformation as one whielsgves the invariant intervéd -r?. So
one might think to definex' =ct in (8.18) whereby the imaginary space coordinates
interpreted as real time coordinates. However,obdyall the reasons given when Misner,
Thorne and Wheeler famously bade “farewelld at page 51 of [4], there are several further
problems with this. The most important problenthat the operation shown in (8.18) mixes
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space in time in @&uclideanrotation rather than the type of hyperbolic mixiofj Lorentz
transformations, see (5.2). So even if one entertthe thought that perhaps this is some
previously-unknown space and time transformatiome timplication of these Euclidean
transformations leads to consequences which siemgynot observed. Specifically, when fully

developed, these transformations would have them for =cos( 3)t+ si{ #)r and
r'=cos( 3)r - sir{ F)t, again, with=27m/m. Now, it is well known that all atomic radii

are within an order of magnitude of the Bohr radgys=7/m,ar. And it is also well known

that for the worldlines of non-relativistic or evenildly-relativistic material bodies such as
electrons withv/c~a =1/137.036., the spatial lengthr traversed over a given timeis
exceedingly less than the time elapsed as repesséyptthe ratior /ct <1. So these Euclidean
transformations — if they were physically real —ulebresult in atomic radii that are orders of
magnitude larger than the Bohr radius owing to fdet that ct> r along the worldliness of
material bodies such as electrons, whereby evenall somponent of being converted into

via a Euclidean rotation would greatly increasedtwnic radii in a manner that has no observed

support. Consequently, we discard=ct as a viable interpretation of these imaginary spac
coordinates.

This now brings us to Heisenberg matrix mechanisi®t only is this another place in
physics where imaginary space coordinates can appatthe appearance of the imaginary

space coordinateg in (8.18) precisely parallels the form in whicle tHeisenberg matriceX'
evolve over time in the classical limit elucidateyl Ehrenfest. Specifically, let us promote the

X to the Heisenberg position matrices :%(ATi + A) which commute with the momentum
matrices P' :%i(ATi - Ai) according to the canonical commutation relation‘, P’ ] =dnl,,

where A" and A’ are the creation and annihilation matrices apd is an infinity x infinity
square identity matrix, which relation of coursads to the uncertainty principle in a well-

known fashion. With this promotion, we focus ogi@en coordinate matrix, sa¥, which we
write as with the matrix indexeX, , wherea,b=1,2,3..0 =7 are integers. Then, also using
(6.2) which gives discrete valués=27m/ m= 271 to &, we may write (8.18) as:

X —» X =exp(i3) X, = exgi 6m m) X, (9.1)

Independently of (9.1), botK and P are constructed from Fourier coefficients of real
guantities, and so their time evolution, see tHpfhkarticle at [8], is given by:

X4 (0) = X, (t) =exp(i27(E,~ E,) t/ h) X,(0), (9.2)
P,y (0) - Py(t)=exp(i27(E,- E,) t/ h) P,(0). (9.3)

The above (9.2) in Whic@(ab(o) evolves over time as a Fourier component was ¢h tfze
original form of the Heisenberg equation of motidrhe correspondence principle as denoted by
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“ 0" likewise informs us that the classical frequescife=1/t based on the classical periodre
given by Planck’s law:

E -E DhaT_b: h?”: nhf (9.4)

with the definitionn= a- b, for radiation emissions as between classicatt®ebandb. This
correspondence holds for=a- b< g b, that is, for a system which is emitting or absoghban

energy E, — E, which is only a small portion of its total enerdpgcause the periog Ot can

then be regarded as approximately equal for ettieeclassica& or b “orbits.” Conversely, for
n=a-b~ a k, the frequencies are no longer integer multipleany single frequency because

t, 0t, and the difference in period can no longer beawtgtl. This is what requires the position
and momentum operators to be specified by the Heeyg matricesX, and P, which
reproduce the Fourier coefficients in the clasdicait. By Ehrenfest, the expected valu<e)$>
and (P) also satisfy the classical equations of motiow, i§we now substitute (9.4) into (9.2)
in the classicah—- b« a b limit of t, 0t , we obtain:

X4 (0) = X,(t) =exp(i27(E,~ E) t/h) X,(0) Oexdizr(a-14) X,(0)= expizn X,(0).(9.5)

At the same time, the ordinary Dirac Quantizatiamndition 2eg= n obtained in (4.7) is

implicitly for the root of unitym=1; the whole point of this paper is to show tHatré are
physically-admissible roots other tharrl as we already did fon=2 in (5.14), and as we shall
show in the next section for other as well. So, working with thew1 trivial root of unity
which characterizes the standard DQ€Y = n, (9.1) specializes with the conventionadl to:

Xao —» Xip=exp(i3) X, = exf{i 8m) X,,= expi 2n) exg 72n) exp 712) X,,. (9.6)

Comparing, we see that (9.5) and (9.6) have theedanm, wherebyX_, is operated
upon by exp(i Zm) The only difference is that in (9.6) this opemathappens three times in
succession because ofxp(i &m), which in turn emanates from the factor of 3 in
detr, () = exdi &) of (6.19) which originated in theexp(i3? /2 of (6.11) and later
progressed to (8.15) through (8.17). So if we ra®sociateX,, in (9.6) with X, (0) in (9.5)
by defining X,, = X,,(0), and if we regardX’, in (9.6) to be the same a§,, (t) in (9.5)in the
classical limitsuch thatX_, Dxab(t), then (9.5) and (9.6) can be combined to find:that

Xa —» X =exp(i39) X (0= exgi 2n) exfi 2n) exp 72) X, ( )

Dexp(i 2m) exfi 2m) X, (t) O expi 2n) X,,( 30X ( t3 (9.7)
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That is, for m=1 which corresponds to the conventional DQ@&g=n, we find that
X., =exp(i39) X, (9 OX, ( 3). So now the factor of 3 idetr; (J) = exf{i &) at (6.19) has
now migrated into a factor of 3 in the time evadati which is to say, the elapsed time has
become multiplied by this same factor of 3.

So with (9.7) being the specialization to thel trivial root of unity, let us now consider
(9.1) generally forll roots of unitym. By the very same analysis that brought us t6)(3he
more general result of which (9.7) is timel specialization, is:

X — X =exp(i3) X,,( 0= exqgi 6m m) X, ( PO X,,( 8 M. (9.8)
Then, let us scale - 3t /m in (9.2), so that (9.2) becomes:
X4 (0) = Xp(3/m) = exp(i 67(E,~ E,) t /hm) X_,(0). (9.9)

Now it is possible to combine with (9.8) with (9.8ing attentive to where to place thesign
which designates classical correspondence and wioenglace equal signs denoting exact
equalities. The result is:

Xa — Xap (3t/m) =exp(i677(E, - E,) t/ hm) X,,(0)

0X., =exp(i39) X, (0 = exgi én ) X, (0) (9.10)

So the upshot is thaX;, in (9.1) corresponds with the time-evolvéqb(St /m) in the classical

limit, that is, X, 0X_,(3t/m) in the classical limit. The exact quantum reliasioip is the one
on the top line, as expressed in terms of energies

We now return to (8.15) through (8.17) and pronakeoordinatesx, y, z to Heisenberg
position operator matriceX, Y, Z. Usingexp(i 39) X (0 OX( 8 i) from (9.8) and (9.10), we
may then write the effect of these root of unigngformations on SO(3) as:

X (0) X' 1 0 0 X(9) (1 0O 0\ X(38Mm
Y(0) |~| Y |=P,X=| 0 cos9 si¥|expis) Y( p|O] 0 ces sh| Y B3h[(9.11)
Z(0) Z 0 -sind cos Al 0- si# ca)l Z( t3M)
X (0) X' cosd 0 - sid X(0) (co8 0- sift)( X( t3m)
YO) |-| Y |=P,X=| 0 1 0 |ex{i®)| Y( 0O 0 1 0| Y 3m[0O912)
z(0) Z sind 0 cog z( 0 si# 0 cad )| Z( t3mM)
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X (0) X' cosd  sind X( 0 co8  sif X( t3m)
Y(0) |- | Y |=P, X=| -sind cos? expis3)| Y( Pp|O|- s ces Y 3 |.(9.13)
z(0) Z 0 0 1 z(9 0 0 Z( 8 )

So the root of unity anglé? =27m/m generates a rotation of the matri¢gsy, Z through an
angle & in the real, physical space of SO(3). But simétausly, in the classical
correspondencehis root of unity angle also generates a timawgion from 0 to3t/m. And it
does so precisely because=2rm/ m=21Q) is equal to2/7 times arational numbey which

means that the allowed values &f excludes277 times any irrational number@, 9 # 2mQ.

Now, let us take the exact quantum relation inttigeline of (9.10) and set=h/2mr=1
into natural units. Withd (3t/m)=(3/m df and holdingdX,,(0)=0, let us then take the

derivative of each side of (9.10) to obtain:

dX,,(3t/m) 3

o |r—n(Ea— E,) X (3t/m). (9.14)

Once we introduce a state vect¢f> with componentsgy, and likewisea=1,2,3...0, such that
any operatorO has the expected valugd)=>" w,* Oy, =(w|Olw), then it becomes

possible to rotate matrices into any basis. Sdiagonalizing the HamiltoniaH such that each
entry on the diagonal is its own energy eigenvathat, is, H |) = E|), (9.14) may be written:

X(I) ;3 4 (@ 1m)= x(aum) ) =i 1 2 x (2 1m) (9.15)

This is a matrix equation that may hold in any basiVe may then reverse the scaltng 3t /m
that was used at (9.9), that is, we may now3sém — t and3/m - 1. And we may then write

X (t) simply asX. Now the above becomes:

dx _.
s [H.X]. (9.16)

This is modern form of Heisenberg's equation of iootfor X(0) with no intrinsic time
dependence, that is, with the partial derivaivg(0) /0t = 0. We see that in this lighth merely
serves to scale the elapsed time, and it is notbwdhat for the special case oE3 (9.14)
reduces todX,, (t)/dt=i(E,~ E,) X,(t) and (9.15) reduces tdX / dt=i[H,X] in (9.16) in
their usual forms without any rescaling of the ticwordinate. For othem, the equation of
motion still takes on the same form; one simply diéeted or contracted time intervals.
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So, if we establisht¥or m=1 which corresponds to the conventional DQ&g= n as a
“paseline” timet _ =t, =3t against which to measure time evolution, then wk kave
t,=3t/m=t/m generally. Thus, for then" root of unity the time interval is contracted,.,i.e
shortened by a factor of. Then, in circumstances where (9.4) applies bmrar a-b<« g b
and so the appearing in (9.14) may be regarded as a clagsecadd witht, [Jt, as between any
two classical orbits, the frequency will vary dg=1/t,,=m/t = hf, and so the energy will
vary as:

(E,-E) O hat—_bz ht—n: nhf, = mnhf=m( E- B.. (9.17)

m m

This is to say that in classical limit, we expdwttenergy transitions involving timd" roots of
unity (which we shall further seek to physicallytarpret in the next few sections) will have
energies generally varying in proportionry so that highem™ root transitions are generally
(i.e. statistically) more energetic than lower ones

It at least an item for curiosity that=1 which corresponds to the conventional DQC
2eg=n, puts a B8 rather than just d into the Heisenberg evolution equations. And this

originates in the fact thaéxp(i 3%) with the same factor of 3 acts uniformly on alleth space

coordinates as seen in (8.15) to (8.18) and (2d19.13). So one may allocate one of these
three time intervals int3o each of the three space coordinates, and cbrkia with the natural
curiosity that there are three space coordinatésobly one time coordinate by writing the

coordinates and matrices in (9.11) forl as(3t,X,Y,Z). Whether the concurrence of these

curiosities has a deeper meaning is not apparetiteamoment, but we do point this out for
reflection.

Continuing, as is well-known, the formal solutioin(9.16) is:
X (t) =exp(iHt) X (0 exd-iHt), (9.18)
and if adX (0)/dt # 0 is admitted, then we may differentiate (9.18) wedl-known way to:

d_X:i[H,X]+exp(th)(aXaEO)JeXp(—iHT)- (9:19)

dt

Also, as is well known, (9.16) applies to any matperatorX — O, that is, the time derivative
idO/ dt=[0, H] is obtained by commuting the operator with the H@mian. Therefore, using

a non-relativistic Hamiltoniad = p*/2m+ V( )9 and taking expectation values, one can shown

in a well-known way via Ehrenfest thdtP)=md( X)/ di and (OV)=-d(P)/ dt, which
reproduces the classical equations of motion.
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So, we have now established that the imaginarydioates which are introduced in
(8.15) through (8.18) lead to no more and no lkaa the Heisenberg equations of motion, albeit
from a different approach point, when these coaigis are promoted to Heisenberg matrix
operators. And, we see how the roots of unityardy rotate the space coordinates as in (9.11)
to (9.13), but also advance these coordinates gfw@u/m units of time. With this, as well as
the previous development in sections 1 through $iawe all the necessary tools to prove, based
on these root of unity transformations: a) thatticmal Dirac magnetic monopole charges (in
addition to the half-integer charges already esthétl in section 5) may exist fon>2 without
observable singularities (section 10); that &wenm charges other tham=2 are excluded by
Lorentz symmetry from physical existence withougsilarity, so that the physically admissible
charge fractions, in view of section 5, happendoespond precisely to them=1,2,3,5,7,9..
fractions observed the Fractional Quantum Hall &ffi@¢-QHE) near OK (section 11); c) that

these very same odah from the roots of unity also are synonymous we=2j with the
observed Casimir numberp=1,3,3,<... for the total conserved angular momentum states in
atomic shells; d) that the tidally-lockea=2 state is related to (Cooper) pairing of electroear

OK; and e) how all of these results coact to preval basis for confirmation via proposed
experiments which would correlate the fractionarges observed in the FQHE to their angular
momentum states.

PART IV: FRACTIONAL DIRAC CHARGES, THE FRACTIONAL QUANTUM
HALL EFFECT, AND ATOMIC ORBITAL SHELL STRUCTURE

10. Fractional Dirac Magnetic Monopole Charges without Observable
Singularities

| this section we are finally prepared to dematstrhow fractional Dirac magnetic
monopole chargegeg= n/ m with m>2 may exist without observable singularities. d@efwe

do this it is important to state that this doesmatessarily mean that these chadesxist, or if
they do, thatall charge fractionsm=1,2,3,4,5.. exist as opposed to only some fractions

existing such as the charges with denomina®)8;5,7,9.. which are observed in the Fractional

Quantum Hall Effect (FQHE) [5]. The purpose ofstsection is only to show that these charges
can existwithout observable singularitiemnd therefore cannot be precluded from existinghen
basis of giving rise to observable singulariti€®ut this does not mean that there might not be
other reasons why some charge fractions are extlitde existing, again for example, charges
with 4,6,8,10.. denominators which are not observed in the FQHE we shall see in the next

section, them=4,6,8,10.. even charge fractions are indeed excluded fronsiphlexistence,

not because of any observable singularities, beddsee such even charge fractions would permit
the charge to impermissibly change its fraction elyeby overtaking that charge through a
change in relativistic reference frame, and woblgstviolate Lorentz symmetry.

The last two sections fundamentally focused on bHwoevspinor transformations of (7.5)
using the root of unity generatons(:?) of (6.12) map onto the SO(3) space of physical
existence and observation, and bring about not ephtial rotations through the Euler angle
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g =2m /[ m=21Q with is discrete becausegkcludeghe angles? = 271Q, but also bring about

a unitary time evolution through a timg =3t /m based on the Heisenberg equations. Now we
shall return to working on SU(2) to study the effe€ the transformation (7.5) on electron
wavefunctionsyy making a¢ = 277 non-relativistic azimuthal circuit about a Diraonopole.
Because these electrons are posited to be nonvigtiat their boost parametey — 0 in (5.3),
and so any azimuthal rotation which occurs durihig tcircuit will be governed by (5.4).

Therefore, each of the two-component spinéyg in " :(ET,UT) will transform identically

under this azimuthal rotation, and as a resultywesy apply (7.5) to botlf and 7 in ¢, and
therefore, tay overall.

Now, as we have already shown, it is the unitaggrivesU, of (5.1) which act on SU(2)
spinors according td — ' =U.{ via (8.8) and itsdetU, = 1 specialization (8.9) to generate the
rotations (8.10) through (8.12) of the space comtdis on SO(3). Likewise, the root of unity
matrices (6.12) acting on spinors fa— ¢ =7, in (7.5) which, via the more general (8.8),
generate the root of unity transformations (8.18bugh (8.17) on SO(3). As then shown in
(9.11) through (9.13) these include a time evotutibrought =3t/m. So it is natural to

inquire what would be the transformation matricka ootation via (5.1fombinedwith a root of
unity transformation via (6.12). Finding this aata straightforward proposition: we simply
multiply the unitaryU, of (5.1) by ther; of (6.12), to arrive at:

w0, =ex] 2)(003(19/3  sir(s ’QJ( cofg, /P i sif, /)j

isin(9/2) codd /2 )\i sifg, /P cd®, /)2

. (101)
S I RS
TZUZ:exp('%j(f:;(zil/z :gg //Ez))](—cgieé //); fgi //))3 102
w12 e wlena 5 F) o
—exp(|%j exp(i()ﬁ/Z) exp(—?ﬂ) /2]( exm% /2 ex;ﬁ—ig3 /)J
o139 0(i(6,+9) 19 0 _ (39 (g9 -
) exp(|7J 0 exp(—i (6,+9) /3] —exp(|7j eXF{I UgTj
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To obtain 7U, and 7,U, one makes use oftosa cof3— sim sif= cdsr+p3) and

cosa sinB+ sir cof= sifu+pB) which are the angle addition formulae. AmgU, is
obtained simply by multiplying exponentials. So tleffect of combining these two
transformations is that the Euler angfteis simply added to the rotation angl@sin the form of

g +J, while additionally the Euler angle introduces therall factor,/det(7;) = exdi & /2

which as we saw in (9.10) to (9.12) also producesia evolution through_, =3t /m. This may
all be consolidated into:

ry, = exp(i ﬁJ exp{iai Mj = exp(q g+ +§) (10.4)
2 2 2 2

We also note that the order of operation does mtlten[ri ,Ui] =0, so the eigenvalues of both
7, andU; are simultaneous observables.

The next question is, what is the effect of (1GHrpugh (10.3) on O(3)? As we did
previously, we may simply apply (8.8) to (10.1)(i®.3). The result, compare (8.10) through
(8.12) and (8.15) through (8.17), turns out sintplye:

X 1 0 0

y|[=exp(i3%)| O cogg +9) sifg,+I) | y|=PRX, (10.5)
z 0 -sin(g,+J) cogb,+9))\ z

X cos(g,+d) 0 - sig,+3)

y | =exp(i3?) 0 1 0 y |=P,R X, (10.6)
z sin(g,+9) 0 cod6,+9) )\ z

X cos(&,+) sin6,+9) X

y |=exp(i3%)| - sin6,+3) coéh,+3) y |=P,RX. (10.7)
z 0 0 1)\ z

As usual, the angles on SU(2) are always equaabodf the angles on SO(3). And as before,
we still have the factodetr; = exr(i 9) which spawns thé,, =3t /m time evolution. Here too

the operation order does not matl[é?i,, R] =0, so these too yield simultaneous observables.

Now, we update (5.7) to include not only the plodisy of an electron rotation under
U,(8) and a phase changg,, but also a root-of-unity transformation undef(). So rather

than ¢, — ¢, =1, 0Uexp(iA)y, in (5.7), we now havey, — ., =1, 07U ;exp(iA)y,
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with the additionalr, placed in either order relative t, because[r3,U3] =0. In the event that

this occurs, then using, =¢ in (10.3), the explicit wavefunction transformatiof (5.7) must
now be updated to:

W, -, =1, 01U exp(iN)y, =1 4,0 exp{i ﬁ} ex;@ J3Mj expA)y,
2 2
, (10.8)
=l Oexpi (03 ¢'°t2 t9 +%+AJ¢/+

where we have renameg - ¢, to make clear that this represents tlo¢gation of the
wavefunction as it makes a circuit about the moteypo It is easily seen that fof =0 this

reverts to (5.7). Now we repeat the analysis afige 5 subsequent to (5.7), but using (10.8)
instead.

To avoid an observable singularity under the dpmra(10.8) after a2/7 azimuthal
circuit about the monopole, we must have a singleedy, - ¢, =¢, in (10.8). And it may

be seen that (10.8) will yielg, — ¢, =, under the condition that:

+9
¢r°t2 +%+/\JI//+ @, =l W, =1, expi 2m)y,, (10.9)

Y. =1y Dexpi(
where we have introduced a 4x4 identity matrdix, operating on¢, and then used
1=exp(i 2m). We see that this is an eigenvalue equation:

4
{(2)D9Xp'( ¢mt7++ @5 (2)/\j @ exd )}/ﬁ: C (10.10)

for the phase differencé = A, , where we explicitly show all the identity matrgce

Now, at (5.8) we also obtaine(d(z) Dexpi (g,m+A)~1 , exdi 2n ))(,1/+ = ( to which

the above reduces fa# =0 and a tidally-lockedg,,, = 277. We then useaxp(io,m)=~1 to

rot

simplify the reduction leading td\ :77(2n—1) in (5.11) and finally to the half integer Dirac

charges2eg= n—% in (5.13). Consequently, we could avoid havindulty treat the eigenvalue
equation. Now, in (10.10), we can no longer da.thNow, we must carefully use (10.10) to

understand thé\ eigenvalues that it permits, and then relate thedereg via (4.5).
To solve the eigenvalue equation, we first distigbthe leadl ,, to write (10.10) more

explicitly as:
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expi(a3¢rL2+Z9+%+/\j—l(z) exyi 2n) 0 &
.(10.11)

¢rot 9 3
2

0 expi(a3 +7+/\j—l(z) exdi 2n)|\n),

Because the operation @) ands, is identical, let us simply focus on the equafioné. And
while so doing, we note that for a non-relativigiectrony,” =(1,0,0,9 i.e. &' =(1,0) is
the eigenvector of a spin up § electron state angt,” =(0,1,0,9 i.e. & =(0,1) is that for a
spin down ( ) electron state. So now, we extract the equdtioif, from the above, namely:

{expi(ash;9+%+/\j—l(2) x| Zn)}gﬁ = (10.12)

while recognizing thaty, has precisely the same equation.

Next, we may use (10.4) for3 thus¢ = &,, together with the explicit form of (10.3), to
ascertain that:

exp(i/\)T3U3 = E‘X[I(i/\) eX[Ei %j ein ggL;ﬁJ = e*FEUi L;ﬂ_i_y_l_/\j

2

= expi (§+/\J expl ((¢r°t +9) /2) _ 0 . (10.13)
2 0 expi (~(4 +2) /2

_(expi(@, 2+ Z+N) 0

- 0 expi(—@., /2+I9+A)

As a result, the explicit form of the eigenvaluei@dpn (10.12) is:

{expi (Ui @J“%‘”\j I exi 2n )}i

. . . (10.14)
:(expl(qﬁrot 12+ +N)- exgi 2n) 0 J(QJ o

0 expi (=@, /2+9+N)- exgi 2n) )\ &,

This contains is a diagonal matrix, so it is sienfd determine eigenvalues. For a spin up
electron withé,” =(1,0) we have:

expi (@, 12+ B+N\)- exp( 2n)= (10.15)
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while for spin down withé,” =(1,0) we have:
expi (=@, /2+9+N)-exp( 2n) = (10.16)
Isolating the phase, both of these results mayesely be summarized as:

t: exp(iN)=exp( - 2-¢, /2

. (10.17)
1 exp(iN)=exp(m-9+¢,, /2

Next, as we earlier did in sections 4 and 5, wairage take the electron wavefunction
over a complete circuit through 2rr azimuth which we designate Iy, =277 to distinguish

the azimuthal27r “orbital” circuit of the ¢, wavefunction about the monopole from thg,

rotation of this wavefunctiomvhich may or may not be tidally-locked its circuit. So for a
tidally-locked electron we set,, = 277 in the above, while for an electron which doesnotdte

at all during the circuit (which is the implied asgption that leads to the customary DQC
eu =2mn of (4.8)) we setp,, =0 in the above. Th&rmr associated with the circuit about the

monopole is not thep,, above; rather it is the in the Wu-Yang equation (4.4) which we now
rewrite with the renameg_, to distinguish it fromg, ,, as:

orb

W, » =y, =exp(iN)y, = exdi 2gd,,)¥. . (10.18)

For a single circuit about the monopogg,, =277, and the above becomes:

W, - =y, =exp(iN)y, = exdi 4-g)y, (10.19)
which is identical with (4.5).

Now, in order to avert any observable singulasitithe electron wavefunction after a
single ¢, = 277 circuit about the monopole as described by (10ab@ye (and the earlier (4.5))
must be single-valuedy, (@, =0) - ¢, (Po, = 277) =4, (#.,,=0). The occurrence of this
single-valued conditiony, — ¢, =¢, is given by (10.9), which after solving its impmlie
eigenvalue equation (10.10) enables us to deduzd&qL So to ascertain what is required for
the wavefunction to be single-valued afteg g = 277 circuit, we may equate (10.17) to (10.19).

This combination of (10.19) being set equal to 1Z.for each of the spin up and spin down
electrons then produces:

1y, sy =g mexp(iNg, =exp( - -4, /.= exp Ag)y.

. . _ : (10.20)
Lo o=yl =expiN)y, = exp( -9+ ¢, 1y, = exfi 7eg)y.
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This has the respective solutions:

1o N, =2m-29-¢
i Ny,=2m-58+¢

o | 2= 4rreg

: (10.21)
| 2= 4rreqg

rot

where we once again use the notatiop to make clear that this ischange in phaséllowing
the ¢_, =2 circuit. This can easily be restructured into:

orb

t: 2e9=N,/2m=n-dIm-¢, 141

. (10.22)
Lo 2e9=N,/2m=n-8/2r+¢, |47

We see that fo,, =0 (no tidal lock) and# =0 these both reduce tBeg= n which is the
standard Dirac Quantization Condition (DQC) of j4.We also see that fa?*=0 and ¢,,, =27
where the electron is in a tidal lock with the mpale these reduce t@eg= n¥%. This is
equivalent to2eg= n-3 in (5.13) because sincemay be any integer, we can simply redefine
n - n+lin 2eg= n-3 to obtain2eg= n+%. So this provides a check that (10.22) correctly

reproduces the both the standard result (4.7) badalf-integer result (5.13). Now let us see
what further results may be found in (10.22).

First, we note thah in (10.22) may be any arbitrary integer, and tiiag n was first
introduced vialzexp(i Zm) at (10.9). Second, we note that thein the Euler angle

F=2mm/m=2rQ) was first introduced at (6.2) to characterize soaft unity. So these are not
the samen but are integers which may vary independentlyred another. The only constraint is
that each of these must be an integer. So let us momentarily nséor the integer in (10.22)

and usen, for the integer ind, thus writing = 27m, / m. With these notational adjustments to
segregate the two independent integers, we nowigubs? = 27m, / m into (10.22) to write:

1. 2eg=N,/12mr=n-2n/m-¢@ /41
g A q Q ¢rot ) (1023)
Lo 2eg=N\,12m=n-nlmg, 4T
Now let us further sepp,, =0 to remove any tidal lock, so that the electrowets one circuit
about the monopole without any rotation Wa in (5.1). This is in fact the way in which the

standard DQC is obtained, so now the only diffeeefrom the standard DQC result is the
presence of the roots of unity fractions/ m. So withg,, =0 the above now becomes:

rot

1 2eg=N,/2m=n-2n/
POT A TT= A 2R rr. (10.24)
l: 2eg=A,/2r=n-n/m
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Clearly, this describes fractional Dirac magnetionopoles, given tha®eg is equal to
an integern,, minus a rational numbé&n, / m for spin up and a different rational numbgr/ m
for spin down. Now, turning from the general te tbpecific, let us study this solution for the
first few integer values ah, paying special attention to the fact that the g electron contains
the rational numbe@n, / m while the spin down electron contains the diffénetional number
n,/ m. This correct yet “asymmetric” result originafesm diag(rg):(ex;(i ?) ,ex(iﬂ)) in

(6.12), and turns out to be what restricts the ghdiractions based on the root of unity
transformations to being only odd integers. Thisvhat then raises the question whether this is
somehow related to the Fractional Quantum Hall &f&QHE), which likewise to restricted
only to odd fractions, aside from the half-inteffaction 2 which correlates to the tidally-locked
electron developed in section 5.

11. Lorentz Symmetry Restriction of the Fractional Charge
Denominators to only Odd Integers

Let us jump right in to studying the eigenvaluelusons (10.24) for each of
m=1,2,3,4,5,¢ Form=1, (10.24) becomes:

1. 2eg=N\,/2m=n-2n=r
9=~y N-2n , (11.1)
l: 2eg=A,/2mr=n-n=n

which is the standard DQC. Becauseand n, are arbitrary integers, we can set-2n, = n,
and n,—n, = n,, and then rename each of and n, ton. So both the spin up and spin down
states will have the standard cha2gg= n. Also, the phase differenok, =2/m will have its

initial orientation restored, i.e., there will be“r@turn to phase” following ap,,, = 277 circuit
about the monopole, see (4.11) and the subseqisenisdion.

Form=2, which represents the square roots of unity,2d0becomes:
1. 2eg=A,/2r=n-n=n

\: 2eg=A,/2m=n-n/2=n/2

Here, we again recognize thaf—n, can be renamed to because this will always yield an
integer for any and all choices of and n,. Meanwhile,n,—n,/2 can be renamed tn/2
because this will always yield a half integer owfaole integer for any and all, andn,. This

difference between spin up and spin down solutissa very interesting and fruitful
development, which we now examine closely.

Let us suppose that we are observing a spin doectren ¢ interacting with a
monopole for whichn=1 in (11.2), in some frame of reference. The npat® charge state
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detected by this spin down electron could therefwrehe half-unit2eg=1/2. However, it is
well-known that helicity, which is a conserved qusn number that commutes with the Dirac
Hamiltonian, is frame-dependent and so can be sedeby a Lorentz transformation which
overtakes the electron. So suppose we were to o@ktake this electron by moving to a
different reference frame. The result in (11.2) &ospin up electron does not permit this
2eg=1/2, because it requires tha&eg= n, which is the standard DQC. Sbe charge
condition would have to change to a whole-integardition simply as a result of changing our
reference framewhich is a physically-dubious proposition. Besauhem=2 states of (11.2)
would violate Lorenz symmetry because the monopérge would not be Lorentz invariant, we
are required to exclude these from being physigatyervable states.

As such, while Dirac charges witkeg= n/2 are permitted for electrons which move
about the monopole in a tidal loas developed in section 5, they appear texotuded for root
of unity transformationsnot because of any observable singular behabidrpecause spin up
and spin down electrons when interacting with mahep are predicted to exhibit different
monopole charge conditions and one should not éxpata change in reference frame should
be able to change these charge conditions. Asudtref requiring that the monopole charge
condition not be changed just because we chandeellaity, we use the requirement for Lorentz
symmetry to excluden=2 as a physically-observable denominator fap, a=0 wavefunction.
Again, howeverm=2 is still permitted, but because of what we foumdection 5 for a tidally-
locked ¢ . = 277 electron, not because of (10.24) which leadseautiphysical (11.2).

rot

Form=3, i.e., for the cubed roots of unity with=27m/3 (10.24) becomes:

1 2eg=N,/2mr=n-2n/3=n/3

: (11.3)
\: 2eg=N,/2mr=n-n/3=n/3

Here, by suitable choices of and n, we can generate charges wizag = n/ 3, thus one-third

of a charge and integer multiples thereof. Becausdave the same net result for both spin up
and spin down, a change in helicity owing to a ¢jeaim reference frame will not change the

charge condition. Because these do not producenaddsie singularities and the same charge
conditions apply even if the electron is overtakgra change in reference frame, this 1/3 charge
fraction appears to be a physically-permitted stétethe above, the change in phase for a single

277 circuit about the monopole 8, =27m/ 3, which means also that the electron will return to
phase, A, =27m, after a ¢,, =67=3[27 circuit about the monopole. So (11.3), and
specifically 2eg= n/3, is the smallest charge fraction permitted fop,g =0 electron. It is
worth being reminded that fon=3, detz, = exdi &)= exfi n /B= eXp /&)= , which is

a special and unique case. So it would be pos&ibléhis special case to set(p(i 39) =1in
(9.11) through (9.13) and miss the fact that kegpire exp(i 2m) in place next toX' (0) in the
form of exp(i 2m) X' (9 is tantamount, in the classical correspondenee(3&) and (9.4), to
generating a unitary time evolution through=3t /3=t.
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This is also a good place to point out how, in stendard Dirac monopole theory, it is
believed that/\, =27m must hold after eacl,,, = 277 circuit about the monopole. But this is

because the only root of unity that is considerethe standard theory is the trivial identity,

and not any of its roots of unity. In reality, (10) is the fundamental condition whiofust be
obeyed in order to avoid observable singularitiedereby the electron wavefunctigh must

remain single valued after each and evgyry = 277 circuit. We learn from (10.17) that absent a
root of unity transformation=0) and absent a rotatiorp(, =0) the phase factor will be
given by exp(iA) = exf{i 2n) = : so that the single-valued wavefunction mandat¢16f19)
will become exp(iA)y, = exfi 4eg)y, = expi 2n)y,, which recovers the standard DQC
2eg=n. But otherwise, if there is either a rotatiog (# 0) or a root of unity besides,,
operating on the spinorsd#0), the factor exp(i/\) in (10.17) will no longer be
exp(iA) = exdi 2n) = ., but will come a complex number with a magnitudea to 1 but a

different orientation. So as seen in (10.21), phase difference\, will be something other
than 27m, which will in turn force the Dirac monopole chargondition to be something other
than 2eg= n, and specifically, will force it to become (10.22Jhis demonstrates how and why

fractional Dirac monopole charges may indeed ewighout observable singularities, which is
the fundamental thesis of this paper.

Form=4, i.e. for the fourth roots of unity, (10.24) betes:

t: 2e9=AN,/2m=n-n/2=n/2

, (11.4)
L1 2e9=N,/2mr=n-n/4=nl4

Here, we have the same problem as in (11.2) whereihange in reference frame which flips
helicity would cause the charge condition to chan§e for the same reason, requiring that the
monopole charges must be Lorentz invariants, weidraquarter-unit charges.

Form=5, the fifth roots of unity withd =2/m/5, (10.24) yields:

t: 2e0=AN,/2mr=n-2n/5=n/t
9=\, n-2n . (11.5)
L1 2e9=N,/2mr=n-n/5=n/5

This does not have the helicity problemnet2 andm=4, and yields no observable singularities.
So we regard this 1/5 charge fraction to be a phjlgipermitted state. The phase change is

A, =2rm/5 so this will return to phase after a aftergg, =1077= 527 circuit about the

monopole circuit. Again, while it takes fivayr circuits for the phase to regain its oritnatidre t
electron wavenction does remain single-valued &ieh and evergsr circuit. Therefore, these
2eg = n/5 fractions may also exist without observable siagty.
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Finally, let's look at (10.24) fom=6. Here we have:

1. 2eg=AN,/2m=n-n/3=n/3
ST A T AT 0 " : (11.6)
\: 2eg=N,/2m=n-n/6=n/6

We once again have the helicity problermef2 andm=4, and so also need to exclude6.

In general, it will be seen that for odal=21-1=1,3,5,7..it is possible for the and !
values of 2eg to be equal,2eg= n/ m= n’(2 I—]). So there are no observed singularities

because the wavefunction is single valued follovargyz circuit, and also, there is no change in
the charge condition following a helicity flip stvet Lorentz symmetry of the charges is
preserved. As a result, we regard these odd-tregtio be physically viable states which might
be observable under some set of conditions. Itrast) for any evei = 2| = 2,4, 6,8.. fraction

(absent a tidal lock), the spin down values wivays be2eg= n/ m but the spin up value will
be more tightly restricted t@eg=2n/ m. Thus a spin down unit charge with, s@gg=1/m,

if overtaken, would be required to change its cedmsome2eg= 2n/ i, which we take to be
physically impossible. As a result, forg,, =0 wavefunction,Lorentz symmetry appears to
exclude all even-integer monopole charge denomiadtom being physically-permitted states,

with the exception ofr=2 which arises not based on roots of unity, buaididal lock between
the electron and the monopole.

So, we see that the odd-charge fractions are gednwithout observable singularity, but
the even charge fractions are excluded as a restiie Lorentz Symmetry of Special Relativity.
Based on section 5, however, see for differentoashatm=2 is permitted as the only even-
denominator charge, not because of the root-ofyuransformations, but because of the electron
being in a tidal lock as it circuits about the mpale. To summarize: the permitted fractions
which are not observably singuland which do not raise violate Lorentz symmetry are
2eg=n/2 for a tidally-locked ¢, =2 electron based on its rotation, and

2eg=n/3,n/5,n/7,n/9.. for a ¢, =0 electron with no tidal lock based on a root oftuni

transformation.  Taken together, the permitteda®ifractions which are non-singular and
Lorentz invariant, including the conventiordg= n, are summarized by:

2eg=a =" n=12345. . me 1,2,357.¢ (11.7)
2T 'm

Consequently, the only permitted charge factioestlaose with odd denominators, with the sole
exception of the even denominator 2. The odd démators arising from root of unity
transformations, and the even denominator 2 afiees a tidal lock of the electron with the
monopole. It is impossible not to appreciate thase are precisely the same charge fractions
experimentally observed in the Fractional Quantuwml HEffect (FQHE), which raises the
guestion whether these are related to the res(tliry).

In general, (11.7) also states that after, a= 277 circuit the phase change will be:
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N, =2m/m. (11.8)

Therefore, the electron will only return to phaderaa ¢, =27im circuit, that is, only after

makingm circuits about the monopole. Th&2 charge for an electron in tidal lock returns to
phase afterg,, =47m which is due to the flipped-sign wavefunction vemsthat occurs

following 277 rotations which sign does not get restored urtiéraa 477 rotation. This
circumstance, as noted, is often described inioglab orientation / entanglement, again, see the
discussion after (5.14) here and section 41.5 pf the m=1,3,5,7,9.. states which have odd

=2m(2-1) = 27,67,10r ,14 .
and thus return to phase after circuits whidfer from one another bA¢

orb

denominators based on roots of unity return to elaer @

orb

=4/m.

Finally, we may use (11.7) in (4.12) to write thenopole potentials for all the permitted
fractional charge states, contrast (4.12), as:

eA Elﬂ(cose— 1) dp
ir: | (11.9)
eA EEE(COSQ'*' ]) dp

with n=1,2,3,4,5..andm=1,2,3,5,7,9..

NOTE: THESE NEXT TWO SECTIONSHAVE NOT BEEN REVIEWED FOLLOWING
MY DISCOVERY THAT THE EXPONENTIAL exp(i 39) GENERATES TIME
EVOLUTION AS SEEN IN (9.11) THROUGH (9.13). | AM PLANNING SOME MAJOR
RESTURTURING OF THESE NEXT TWO SECTIONS TO REFLECT THIS NEW
UNDERSTANDING. BUT EVERYTHING ABOVE THIS PLACE, |.E. SECTIONS 1
THROUGH 11, ARE PRETTY WELL SETTLED AND | EXPECT THESE TO REMAIN
ASISWITH RELATIVELY MINOR CHAGESFROM HERE.

12. Might Root of Unity Transformations be Synonymous with
Wavefunction Transformations into Different Orbital Angular
Momentum States of Atomic Shell Structure?

It is of interest that the permitted fractionabofpes2eg = n/ m of (11.7) arising from the
root of unity generator, for (6.12) are naturally restricted by helicitynsaderations to the odd

integer denominatorsn=1,3,5,7,9..,, and that the only permitted even denominatan+#2 as

shown in (5.14). First — whether a real connecttormerely a coincidence, which must be
studied theoretically and experimentally — it jgst happens that these gmescisely the same
factional charge denominators empirically observaedthe Fractional Quantum Hall Effect
(FQHE) at ultra-low temperatures near OK. Thesetgpically represented by the fill factors
v=n/mwith =1,2,3,5,7,9.. Second, the exclusion of even denominators dttzar 2 is not a
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condition imposed in order to fit the FQHE. Quite converse, it is the requirement that the
charge condition at any given root of unityremain invariant with respect to the flipping of
helicity, which theoretically compels the exclusiminthe even denominator states other than the
tidally-lockedm=2. So in a very basic sengen-numbered denominators are excluded by the
Lorentz symmetry of special relativityrhird, the even denominator 2 arises when actrele
wavefunction completes &7 circuit about the monopole in a tidal lock withetmonopole,
which is adifferent theoretical causthan the root-of-unity transformations that yiéfhé odd-
integer fractional denominators. Fourth, see, &igure 3 at [9], for the odd-integer fractions
the empirical curves mapping the Hall resistafge against the strengths of the applied
perpendicular magnetic field are deep and narrothh ®Ri; becoming very small at any given
fractional plateau, while for the even-fractiaom2 the curve is wider and shallower, wiiy
remaining substantially non-zero. This qualitatilféerence in the empirical data suggests that
the odd fractions have different empirical causeahan the half-integer fractions. This is
consistent with the different theoretical causesnehy the odd fractions arise from root of unity
transformations and the even faction2 arises from a tidal lock.

Given the foregoing, it is difficult not to at legasuspect a possible physical connection
between fractional Dirac monopoles and FQHE chéraetions. If such a connection can be
established theoretically and confirmed experimgntdis would mean thahe FQHE provides
direct albeit heretofore-unrecognized experimertdatlence that U(1), magnetic monopoles do
exist in natureat least in the ultra-low temperature environme@bnsequently, it behooves us
to gain a better understanding of what it reallyamse— physically, not mathematically — to
subject a spinoé — and by implication a wavefunctiah — to a root of unity transformation

¢ - &' =1,& about the z axis. As we shall now see, theseabahity transformations exhibit

behaviors which map very directly to the quantizethaviors of electrons in atomic shells,
suggesting that atomic structure is the prime sttsjpeprovide a physical understanding of root
of unity transformations.

Mathematically, roots of unity (6.1) are multivath numbers all with the same
magnitude 1, but with an Euler angfe=2/m/ m= 27Q from (6.2) which points each of these

roots in a uniqueirection in the complex plane. So, for example, the fa®bt of unity
(1)”/1:1n =+1 has a single value-l, at an angled =360°, which remains the same for all
iterative multiples of360°. The square roots of unitgll)”/2 =+1 have two valuesFl for
n=1,2 respectively at angle8 =180°,360, with iterative cycling forn>2. The cubed roots
of unity (1)”/3 have the three value§(—1¢i\/§) and +1, fom=1,2,3 andd =120, 240 ,360
respectively, with iterative cycling forn>3. Indeed, the primitive, non-trivial roots
%(—L—ri\/é), although complex numbers, have a magnitg(jel—i\/é)%(—lﬁx/_s) =1, and so
may easily be thought about together with thedtivoot +1 as at sign with the three values,
not two. The fourth roots of unit{[l)”/4 have the four values,-1,-i,1 for n=1,2,3,4 and
J=90°,180 ,270 ,360, respectively, with iteration thereafter, and s® afour-valued analogy
to a£ sign. And so on for all other roots. So any robtinity (1)”/m has preciselyn distinct
values which then recycle after ea2w cycle in the complex plane, and these roots may be
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thought of as am-valued £ sign which consists of complex numbers with magietl. They
are distinguished form one another solely by tkeier angled =2/m/m.

Equivalently, and more physically, we can thinktué roots of unity as providing“eoot
of unity degree of freedomyvhereby the number 1 can take on a total of exantdistinct

values for any given unity rod)”". Each(1)"™ with 1<n< m for a givenm can be thought

of as a generalization of electron “versions” frdme two versions discussed in section 5mto
versions for which the two-versioned sign is simply represented by the special case

+1= (1)”’2. The reason we wish to think about this root oityu multi-valuedness as beirgy

degree of freedopaside from this being a step closer from mathemwabd physics, is because
when we start to talk about fermions — and electrare quintessential fermions — the Exclusion
Principle demands that only way one can assemBlgstem of fermions containing more than
one fermion, is to provide each fermion with a w&cet of quantum numbers that distinguish it
from all the other fermions in that system. Butbattom, these exclusive quantum numbers are
simply multi-values permitted by some degree oréeg of freedom. So the question we shall
now consider is whether the multi-valuedness ofrtteés of unity — when generalized to the 2x2
root of unity matrices developed in section 6 +nigact related to the degrees of freedom and
guantum-numbered-values that electrons must haveder to coexist in the shells of the same
atom consistently with Exclusion. If so, then wancacquire a more direct physical
understanding of what it means to subject a fernmowhat we have all along called a “root of
unity transformation,” and further, can relate tteetionalized Dirac monopoles not only to low-
temperature FQHE physics, but also to atomic sirect with opportunities for direct
experimental validation of the results presenta@.h&o let us now proceed.

The smallest fractional charge permitted by (1b&3ed on the root of unity degree of
freedom, beyond the=1 state2eg= n of the standard DQC, is tme=3 fraction 2eg= n/ 3 for

which #=2/m/3=n120C. (Again,m=2 has a different genesis in the tidal lock rexadwn
section 5.) As discussed near the end of sectjomh@nm=3 the discretized space and time

transformation (9.18) with th&, and " suppressed becomes:

e e e

X X' ) | -sin(2m) cog 2m) ) ¥

So in sum, fom=3, and indeed uniquely to onflg=1 andm=3, there is no Euclidean space and
time mixing. Let us now study=3 in further depth, as an important example.

The m=3, n=1 generators for which? =27/3=120, using exp(irr):—l as well as

cog(77/9=1/Z and sin(77/3=+/3/2 and the sign behaviors of sin and cos in the four
quadrants of th®< @ < 27 domain, are ascertained from (6.12) to be:
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(5)Ho O (34 AR e

For m=3 andn=2 we haved =47r/3= 240 which flips the sign of the sin but not of the cos
Theser, generators are the squarg’s of each of (12.2) as is easily checked, and are:

(5)Hs V(S AE ) S AT e

Of course form= n=3 we haved =27 =360 and all threer, (& ¥ I, , the 2x2 identity triplet.

So now, focusing on the azimuthal generatpabout thez axis, let us transform a spinor
via § - & =r1,&. As already reviewed near (5.4) and (5.5) andnagear the start of section 10,
if we take the electrogy to be non-relativistic (no boost), then the enbieac wavefunctiony
will transform in the same manner ds- ' =7,¢ acting on the spinor and so we may use the
spinor & as a proxy for the completgg. So we takeé' :(51,52) as in section 7, and as
observed at (10.2) we recognize tifat=(1,0) corresponds with a spin uf' =(1,0,0,9 while
&" =(0,1) corresponds with a spin dows' =(0,1,0,9. (At this point, we no longer need the
“+” subscript introduced at (2.1).) So to directpnd symbolically remind us of these spin
correspondences, let us now denote this spinoréas (T : l) rather than &' :(51,62) .

Consequently, the transformatidn— & =r,(277/3)¢ is explicitly given using (12.2) by:

SRR R ey T

Likewise we turn to the transformatioh - &" =r7,(477/3)¢. But before we do this, because of
the cyclical nature of? =2/m/m= 2mQ, let us instead write the root of unity generaasr
r,(4m/3)=r1,(-2r / 3) using anegativeangle In short, we make use of the cyclical nature of

trigonometric functions to work in the domair< 4 < +77 rather than0< 4 < 277. The results
are the same, but the domaivr<sd <+ displays certain symmetries of interest that
0< < 2 does not. Thus, we use (12.3) represented,@y7/3) =1, (—27 / 3) to write:

SRR WA T el s B

49



Jay R. Yablon
JULY 9, 2015 DRAFT

And of course if we use,(0) =1 ,, now that our domain is77<$ < +77, then for the trivial root
at J =0 we have merely¥ - " =¢.

Reviewing the primitive root transformations (2ahd (12.5) together with the trivial
& - &" =&, we see that there are a total of six (6) diststates form=3. Over the domain

—;r< 9 <+, first, for what we write asd=0[277/3 there are the untransformed'=(1)" 1
and | "= (1)0 | . Second, also referring to (6.1), for what weteves:? = +1[277/ 3 there are the
transformedt '= —%(l+i\/:_3) 1=(0™ 1 andi'= —%(1—i\/§) 1=(9™ 1. Finally, for what we
write as #=-1[27/3 there are the transformedt’= —%(l—i\/é) 1=()™1  and
V"= —%(1+i\/§) 1=(9™" 1. So, if we now define a first quantum numbetr<|, < +1 so we

may summarize these three roots of unit;(l)'é’g, and if we define a second quantum number

s, ==+ which corresponds to and ! , and if we define a third quantum numbgr=l,+s,,

then we may summarize these six states as follows:

(D)™ 1=l =+1s,=+4,j,=3 #=-100 /3

(1)+1/315||Z=+1!Sz -1,j,=1d=+102r /3

(1)°1=[1,=0s,=+1,j,=+3 9= 027 /3 (12.6)
(1 1201, =05, =4 ,j,=-4 9= 02r /3

(1) 1=)l,=-1s,=+1,j,=-1 I=+102r /3

(1) 1=)l,=-1s,=-1,j,=-2 §=-127/3)

This is of high interest, because the root of ugiyerators effectively take each of the
two 1 and | states and multiply them with a cubed root of yititat has a magnitude of 1 but
variable direction, triplicatingr and | into a total of six states which all together magy
characterized over ther<d<+m domain byazimuthal quantum numbetbat correspond
precisely to six permitted exclusionary electramtess in the shells of atoms which are likewise
characterized bgzimuthal quantum number&\nd in particular, the degree of freedom prodide
by the multi-valuedness of the root of unity getensa— now characterized dy=-1,0,+1 and
obtained by a rotation in the complex plane based a-axis generator — maps precisely to the
degrees of freedom provided by tkexis component obrbital angular momentumoften
denoted by the same symblgl=m (a different ‘m” from the one we have been using as the

fractional root of unity denominator.).

Additionally, if we do treat thesg,,s,, j, quantum numbers as the third component of
operatorsL =1, S=s J =} with Casimir numbers,s, j defined respectively in the usual way
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by L?[&)=1(1 +1)|&), S*|&) =s(s+1)|¢) and I*|&) = j(j +1)|¢) thus j =] +s, then all of the
me=3 states in (12.6) have the common set of Cagiminbersl =1, s=1 and j=3. So not

only is there a one-to-onazimuth-to-azimutimapping between the six states of (12.6) and the
six states of g@-shell electron all of which represent operatidm®agh an azimutlyp about the

z axis, but the mapping is structurally isomorphécéuse these each arise framo degrees of
freedom, one being the threebed roots of unitythe other the twantrinsic spinstates. To
summarize this mapping of thee= 2[in= 2[E states, we may write:

o (0 (9° (37} 0{r 3} = (L} D{s} = pf1=15=2 j=2), (12.7)

using the set of cubed roots of un{1(31)+1/3 (1)0 ,(1)_1/3} composed with the set of up and down

SpinS{T,l}. And, of course, because=3, via (11.7), these are also the states for wtheh

fractional Dirac charges are given Bgg= n/3, that is, these are the 1/3-unit Dirac monopole

charge states. This would suggest, if these mgppane meaningful and there is a connection
between fractional Dirac monopoles and the obseR@HE charges, that one should be able to
observe six (6) distinct spin states for the 1/8rgk fractions, namely those of (12.6), and that
the electrons (presently thought of as quasi-gagjcconnected with these observed 1/3

fractional charge states should correlatq3t¢l =1s=1,]j :%> state electrons.

This raises two questions: Firslpes this pattern generaliz®® other atomic shell
structures? Second, if it does generalize, doesite physical sense to entertain the possibility
that the root of unity degree of freedom is simply thleital angular momentum degree of
freedom in a different guiseWe take these two questions in succession.

As to generalization, saving the (here, unnecgpshificulty of solving the polynomial
zin:;lx‘ =0 in (6.14), we first use (6.1) to write, from (6.12) directly terms of unity roots as:

Tg(ﬂ)_(exp(i?ﬂ) 0 j_(exp(iZIT(m/m)) 0 j_[(l)nm

0
- 0 exp(id) | 0 exp(i 2m /m) | o (1)””“} (12.6)

Therefore, the general transformatién- &' = r,£ is now:

E=Gj - ¢ =Gj = 3c‘=((1):/m (1)2,mJ(I j :[((1]);::; J (12.9)

So now let’s sample=5, the fifth root of unity, which is the next highfraction permitted by
(11.7). The five distinct states hawe=1, 2, 3, 4,5, althoughn=5 is the trivial§ - &' =& while
the other four states are primitive roots. Workwigh the domain-7< 4 <+ for which the
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Euler angles argp =0°,£72 £+ 144 and given the recycling of roots of unity, we mago
represent these recycling statesnas-2,—1,0,+ 1;+ z which as we see sets up ba 2 Casimir

number for the orbital quantum number. So settmmgp in (12.9) and inserting each of
n=-2,-1,0+ 1;+ Z and using recycling, and also indicating the Ewegle 4=2/m/5, we
obtain the five transformations:

(1)—4/5T ) (1)+1/5T
(1)—2/5l - (1)—2/5l

(1; T J . (12.10)

9=-20{27/5) Cj:

9=-1l{2r/5) (IJ:

9=0rf217/5) (Ij{

( +4/5 T } =£(1)1/5 ) }
(1)+2/5 . (1)+2/5 .

S

()" 1=]l,=+25,=-4,],=+3 9=+ 213

@ 1=, =418, =43 =43 9= -2 20 1§)

()7 2|1, =418, =3 J,=+3 9=+ 1 2 /3

@) 1=l =08, =43 j.=+3 5= 0 20 /3

(1)’ 1=[l,=0s,=-1,j,=-1 ﬂ9=0[q2”/5)§ o
0" et oo

0" =21, = o= )

(07 2= 28,2441, 9= 1

()" =], =25, =3 =~ 9=-2{ 20 13)

This provides a different view of the results a1.0) through (11.6) which led to the
inclusion of odd-integer factions and the exclusibeven-integer fractions. When we write the
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transformationé - &' =7,& as in (12.9), we see very clearly that the eigkmesfor + are
T, = (1)2”/m> and | =|1, :(1)”/m>,
where the factor of 2 is an essential aspect. #hiahy in (12.11) thel states cycle the

coefficient of 277/5 in & in harmony withl,, but thet states cycle at twice the rate, see also

(12.11). Nonethelestr odd m onlyover the full domain-7< 4 < +77, we end up with all the
roots of unity being distributed to both spin uglapin down in the manner of (12.7), which for
(12.11) hadlO= 2[in= 2 E states we may write as:

(9™ (977 (" (F(Fofr i} = {}0{s} - pli= B=1 i=y). @212

So this does indeed have the ten (10) azimuthedssta whichd-shell electrons may be found.
And it can readily be shown that this pattern twiff hold for f, g, h... and other electrons
permitting 14, 18, 22... states with=2%,2,4.... So as to whether this pattern generalizes, the

answer is yes. Fan=1 which yields via (11.7) the standard DQ@gg= n of (4.7), we have
(1)"1=[1,=0s,=+1,j,=+3 S=0f 21)) and (1)’ 1=|l,=0s,=-%,j,=-1 9= 0f 1)),
which are simply the two (2) states permittedsshell electrons.

(1)*"™ while those for1 are (1)"". More symbolically,t =

In contrast, weren=2,4,6,8... to be aBveninteger, we would lose some states, which is
another view of why even integers are excludeddolat integers are permitted. Take4, for
example, and let's go back to using the domd&@r ¢ < 2 thus n=1,2,3,4. Because

2n/4
r,=(1) >
the root numerator pattern here will be 2, £#Z& 8>4 when we account for recycling. We

would thus duplicate the even numerators, and dectbe odd numerators, but only for spin up
and not for spin downThis is the intrinsic pattern for any and all even But let’s look at odd

1=

I, = (1)"/4>, the pattern of the root numerators will be 1£,3But because =

m, now usingnF7 as an example. Here, the numeratorsu’etr3 :(1)"/7> inthe 0<¢ <2

T3 — (1)2n/7> ’
including recycling, are 2,4,6:81,10>3,12>5,14>7. So all the seventh roots are included
because all of the numerators 1,2,3,4,5,6,7 dordmeuin the 2,4,6,1,3,5,7 sequence, and there
are no excluded state3his is the intrinsic pattern for any and all odd rgain, this is another
vantage point on (11.1) to (11.6) which causedutigcard the even-integeras unphysical on
helicity grounds. So referring to (11.4) and the4 example just discussed, the odd numerators
are skipped fort but not for | , which means that the charge fractions for thenéor are
2eg= n/ 2 and for the latter ar@eg= n/ 4, which means that if we Lorentz transform so as to
flip the helicity we can alter the charge, whictarsunphysical result, which is why even-integer
charge fractions must be physically excluded (exoef2 based on the tidal lock and not the
roots of unity).

domain are 1,2,3,4,5,6,7. And over the same dorian numerators int=

These patterns may also be concisely characteuged modular arithmetic. The least
residue fornmodm is the set0,1,2,3.m- ., which we shall denote asmodm where we
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define the symbolmod with an underbar to mearleast residue modulo.” So using this
notation, nmodeverz 2 nmod eve but nmododd# 2nmododd for evenand odd integers.

With the same examples used above, we haveod4={0,1,2,B# B_mod#{ 0} for
ever=4, andnmod7={ 0,1,2,3,4,5)6= 2 _mod¥{ 0,2,4,6,1f for odd=7. The former
is missing odd elements from tt#m mod 4 set, while the late2n mod 7 contains all the same

elements asamod 7, but simply generated in a different order. Aht tpattern applies tall
integers both odd and even.

Then, to “balance” this least residue symmetricabbput zeravhich can only be done for
odd m we need to subtrad¢m-1)/2 from nmodm, thus formingnmodm-(m-1 /2. To

simplify we further introduce the notatiomfod,” to denote this_leastesidue modulo when

symmetrized about zero, such thamod, m= nmodm-( m- ) /. This “symmetric least

residue modulo” exists only for odd integers, whishanother reflection of the odd-integer
restriction first uncovered at (11.1) through (31.8ut these are the same integers that we have
heretofore denoted ds, which is to say that:

|, =nmodm~-(m-1) /2= nmog . (12.13)
And this in turn means that:

~(m-1)/2< L, <+(m-1 /2 (12.14)
At the same time, the outer boundslgmre given bytl , so the above may be connected to:
-1 ==(m-1)/2<1, <+(m-1) /2=+I. (12.15)

And from this, given also tha =3 and thatj =1 +s, we find that:

=l + (12.16)

N3
N
1]
+
w
1]

With this final observation tha2j = 2(| +s) =m for all the odd fractions, we return to
(11.7) and now write the Fractional Dirac Quant@aiCondition (FDQC) as:

n_n n
m 2j 2(I+s)

2eg= ; n=1,2345.; m= 2j= R+ 9= QHi)= 12,357, (12.17)

Note that although the even denominator 2 origsmdi®m a tidal lock while the odd
denominators originate from roots of unity, we h&ept all the denominators together to be able
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to later examine these different origins from ti@mpoint of spins and orbital angular momenta.
We may also return to (6.2) and write the Euled@mgdhich drives the unity roots as:

g=2m2 == 7" =omp (12.18)
m = j +s

where the rational numbé&®=n/2j=n/2(1+s). Then, we find that (12.7) and (12.12), when
fully generalized, become

=+

2nm:{(1) AM}D{T 1} L0s - (12.19)

m

m—1/2,3: +_1'J':+Ln>_
2 2

So, for example, fom=3 the unity root exponenimod, 3/3=-1 ,0#+1 as seen in (12.7) while
for m=5 the unity root exponentmod, 5/5=-2 ~1 ,0+1 +2 asin (12.12). Further, while we

have developed the above in the domain< 4 < +77, the fact that we may only have odd root-
of-unity denominators means that we may never h@&wet/r, because this Euler angle exists
for any and alleven-denominator roots of unity, but foone of the odd-denominator roots.
Every root of unity includes =0, but only the even rootinclude #=x7r. Therefore, the
physically-permitted domain is reallyzr<d < +77, where we have removed the equatfity <
from the domain definition to likewise represene thnphysical character of the even-root
denominators.

Consequently, now we have a possible answer taulestion raised at the outset, “of
what it really means — physically, not mathemaljcal to subject a spino& - and by

implication a wavefunctiony - to a root of unity transformatiod - &' =7, about the z

axis.” When we start with an electron for whiekr1, which designates the first root of unity
which is equal to 1 alone, then if these connestame physically valid (and that is the subject of
the next section), (12.16) tells us thad. Now, if we subject that starter electron ttraot of
unity transformation” (12.9) using a particular osdleger m=3,5,7,9.., (12.15) and (12.16)
then tell us that this electron has a total angul@aomentum Casimir number

| =(m-1)/2=1,2,3,4.. respectively. So each time we increasy 2 (and because must be

odd we must always use increments of 2), we witeasel by 1. So what is the physical
interpretation of transforming a spinor / electuming the root of unity generators (6.12)?

A possible answer is thapplying a root of unity transformation is synonyrmmaowith
transforming that electron into a different stateoobital angular momentumSo when we add
an electron to an atomic shell, and we need tgfgatie Exclusion Principle, and when in order
to do so we need to add some orbital angular mamerthe mathematical operation we use is a
root of unity transformation. When we remove &ti&on from an atom and change its orbital,
the mathematical operation we perform is root ofyutnansformation. This possible connection
between roots of unity and the orbital quantum nemdertainly appears to work based on its
isomorphic mapping to degrees of freedom and tlelable quantum states. The question to
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which we now turn is how all of this might be ursteod and assimilated in relation to pure
theoretical and empirical physics.

13. How Root of Unity Transformations Generate Orbital Angular
Momentum Changes

If the fractional Dirac chargeeg=n/ m found in (11.17) to be restricted to
m=1,2,3,5,7,9.. by Lorentz symmetry and by a tidal lock analysie & reality being
empirically observed in the FQHE even though tlas hot yet been understood or recognized,
then because the FQHE is a phenomenon only obsatudtta-low temperatures, this empirical
knowledge would require us to regard (11.7) noa @eneral electrodynamic phenomenon, but
rather as a phenomenon hdw-temperature electrodynamics This would mean that the
appearance of a symmetry between electric and rtiagifearges undee - g interchange in

2eg=n/ m is a low-temperature symmetry of electrodynamickictv apparently is not

observed, and is likely broken in some fashiorfpedinary” temperatures sufficiently removed
from OK. Consequently, the question would arisetcaiow (11.7) migrates from ultra-low

temperatures, through ordinary temperatures whiehnaither ultra-low nor ultra-high, up to

ultra-high temperatures GUT associated with whahyn@gard as the conditions in the very
early universe. Our present understanding of béghperature monopole physics is laid out in
the original works by ‘t Hooft and Polyakov [10]11] as well as by Weinberg's clear

summarization at 442-443) of [12]. Answering thigestion as to the migration from OK all the
way up to GUT temperatures would require a directsaderation of the relationship between
electrodynamics and thermodynamics, possibly reguitheir unification, which is a question

we simply point out, but shall not attempt to resoiin the present paper.

The FQHE is observed in conductive materials whete cooled to ultra-low
temperatures and then subjected to large perpdadicagnetic fields. These conductive host
materials which exhibit the FQHE are composed ofrat which contain electrons and protons
and neutrons, and the fact that we cool theserastrials down to ultra-low temperatures does
not alter the fact these materials contain elestramd protons and neutrons. In particular, the
electrons in these materials are subject to théuBxm Principle because they are fermions, and
this does not change by virtue of cooling the hoaterials down to low temperatures. In fact,
one of the striking features of low-temperature gty which has been amply confirmed is that
although low temperatures migatpriori be thought to remove all energies from a systam, t
need to maintain Exclusion even at low temperatareans that electrons will maintain certain
energies simply because they need to be in eleesied)y states to satisfy exclusion.

Thus, an electron statel, |Z,Sz> which has a particular set of principal, orbitablaspin

quantum numbers where are greater than the grdamd$| n=11=0,s, :i%> of ans-shell

electron will maintain its elevated quantum numtersen near OK. How do we know this? We
know this by the very fact that the host materidll ietains its material identity even when it is
cooled to near OK. If cooling to near OK allowdbitlae electrons in the material to drop down to

the lowest energys:|n=1,1, = 0,5, =+1) states, then the host material would disintegiratte
Hydrogen or Helium, because these are the only exie&snfor which all electrons can be
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maintained in ars shell. For any host material from Lithium all they up the Periodic Table,
there must be some electronspird, f, g... shells and these necessarily have elevated esergi
forced by exclusion even near OK. Because thed¢H-Qbst materials are not observed to turn
into Hydrogen or Helium near OK, we know that themntain somep, d, f, g... electrons, in
addition to thes electrons which they house in their very innerlisheConsequently, we may

begin to study what happens to an electron in s|0mg sz> state, and patrticularly, to how outer

shell “itinerant” electron behaviors might be ohsel, when the host material containing that
electron is cooled to near OK and a very stronggmdicular magnetic field is applied.

The electric charge strenggtin eg=1 n of the standard DQC (4.7) and by extension of
the fractionaleg=4 n/ m of (11.7) is the same one which is related tortiming fine structure

coupling viaa =¢€*/ 4mhc, which, at low probe energies / large impact diséa approaches the

numeric valuea = e’/ 4mhc01/137.036. asymptotically, see, e.g., equation [1] in Dirad}
and Witten’s [13], pages 27 and 28. Indeledac’s original purposefor the derivation in [1]
was to “give a theoretical value fet and thus the number ~137. However, the DQC laft t
number “from the theoretical standpoint, complet@hgdetermined,” and to date, despite many
efforts to explain this number, this still is arpeximentally-derived number with no commonly-
accepted theoretical explanation. Dirac perceiv&dither disappointing to find this reciprocity
between electricity and magnetism, instead of alguelectronic quantum condition, such as
[Dirac’s equation number [1]].” This means thag¢ ttharge strengt@in (4.7) and (11.7) is the
charge strength for an electron. So — notwithstanthe presently-prevailing explanation using
guasi-particles and collective excitations — if .fl)1were to be the underlying cause of the
FQHE, this would suggest that at low temperaturear rOK, under the influence of a large
applied perpendicular magnetic field, electronthim conductive host material exhibit an electric
/ magnetic duality including a magnetic monopolarge, and also exhibit charge quantization
and fractionalization. This would also suggestt tvhen the temperature is raised above a
certain critical temperature related to the hostemia, this duality symmetry becomes broken,
the magnetic monopoles become hidden or transmutedome other form (perhaps related to
the rise in temperature), and the electric chawged its fractional character and simply becomes
guantized in accordance with what is observedmpégatures sufficiently above OK.

If, however, the fractional denominatarwere to be further related to the total angular
momentum Casimir number accordingjte:| +s =4im as is suggested by (12.16), then because

these electronic quantum numbers do not go awayQke&est the host material disintegrate into
Hydrogen or Helium which it does not, the chargection being exhibited would be a direct
manifestation the total angular momentum, so thaheharge fraction should then correlate to a
set of definitive orbital and spin states whichddde experimentally detectable under the right
circumstances. For example, an itineramt3 charge ofn/3 should exhibit azimuthal
momentum characteristics of the=2, p-shell electrons. And an itineram=5 orm=7 charge

of n/5 or n/7 should exhibit azimuthal momentum characteristitshe j=2 or j=1 , d-

shell orf-shell electrons, and so on. This in turn shoulovigle a range of opportunities for
experimental validation via spin state / fractiordlarge state correlations which will be
proposed in detalil in the section 15. But at tlemant, the question to be addressed is whether
on theoretical and physical grounds, it makes sémsthese fractional denominatarg which
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originate from them™ roots of unity in (6.1), to be so directly conretwith the total angular
momentum as to be one and the same thingnaz2 j = 2(1 +s) as found in (12.16).

It should be clear that the identification of theantum numbes=1 in m=2(1+s)
with the spin Casimir ins(s+1)|¢)=§’|¢) is fully, deductively supported, because this
originated in thet and | spin states being transformed in (12.9), and tlstates are the

eigenstates of s, =+, that is, s,|1)=+4[t) and s,[1)=~4[1). So the answer to this

question can be boiled down to the question whetteridentificationl, =nmod, m in (12.13)
can be sustained, because if it can, then thiglsetswer and upper bounds gnin (12.15), and

this then establishes1=2(1+s) in (12.16). So takingn=3 for the cubed roots of unity as an
example, does it make sense to assodmat®d, 3:{— 1,0+ ). with |, for | =1? And for the
fifth and seventh roots of unity, does it make gefts associatenmod, 5:{—2,— 1,0+ & }Z

with [, for | =2 and to associatemod, 7={-3~2;- 1,0+ % 2 J, and so on? Specifically,
is there something about a root of unity whicmisome way suggestive of — or better yet, which
leads directly to — making the general associationnmod, m between odd roots of unity

which are mathematical, and the azimuthal quantumberl, which is physical?

At the simplest level, there is certainly a nummesorrespondence. The total angular
momentum of an electron, times 2, is always anmddber2j =1,3,5,7,9.,, while the helicity

considerations of Lorentz symmetry reviewed inisaclll forced the observable roots of unity
to be the same odd number=1,3,5,7,9... And on top of this, setting aside the denominaio

the fill factor for the FQHE is also an odd integex1,3,5,7,9... So at least numerically, we
can setm=2 j=v and have these results all fit tightly togethBut sometimes an odd integer is
just an odd integer, and one should not read amytfmore into it. So let’s dig further.

At the next level, the root of unity denominator=1,3,5,7,9.. is more than just a
number. Each root of unity provides a degree eédom with exactlyn multi-values, so when

thesem values are twice replicated for and! as is shown in section 12, the number of distinct
exclusionary states for any givemwill be 2m=2,6,10,14,18., and this maps perfectly to the

number of electrons which can fit into amp, d, f, g... shell, which is fundamentally driven by
the available-l <|, <+ times two spin states, i.e., byls,, see (12.7), (12.12) and (12.19).
And from (12.13) we have the direct corresponddneen mod, m between the permitteld and

the symmetric least residuemod, m. So now an odd integer becomes somewhat moreatian

odd integer. Now we have two degrees of freedanh elegree of freedom permits the same
number of exclusive states, the composition ofdhes degrees of freedom permits the same
number of states, and all of the quantum numbershagrovide this freedom are identical.

At the next level, let us talk about observablédl of the development through section
10 of this paper fundamentally established thattivaal Dirac monopoles could exist without
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observable singularities, which means that theasetitmal monopoles themselves with charge
fractions m=1,2,3,4,5.. could be observable. Then in section 11 we shol@d Lorentz
symmetry and specifically helicity consideratiortg/gically excluded all of the even-numbered
fractions, and thus placed tighter restrictionswdmat is observable. So now, aside from the
charge fraction 2 which arises from the tidal lat&cussed in section 5, the observable fractions
are the odd numbemn =1, 3,5,7,9... Butif these odd fraction® are directly observable, and if
they are also directly related to some Casimir nemdd angular momentum, then the angular
momentum Casimir number to which they are directiated must itself also be a direct
observable So, if we are to regamh=2 j found in (12.16) to be a correct relationshipntias
necessary thgt be a direct observable. Of courgas a direct observable, because the total

angular momentumd = J, commutes with the Dirac Hamiltonia{]H ,J] =0. In fact,j is the

only Casimir number of angular momentum to which tlaetionm could be related if it is to be
a direct observable, because neither L. nor S=§ is separately observable. The orbital

L =rxp, when commuted with the Dirac Hamiltonian, yielpid,L]=~i(axP), while the
spin / helicity operatoiS=1% for which diag(Z) =(o.0) commutes agH,S] =+2 (axP).

Only when we form the total angular momentuth=L+3Z=L+S, do we obtain
[H,J]=[H,L +S|=0 and thus find that the Casimjrin J*|¢)=j(j+1)|¢) is the direct
observable and thah=2j = 2(| +s) found in (12.16) does indeed directly relate asepbable

to and observable. Had we found a relationshighagcm=1 alone (i.e., had we found in
section 11 all charge fractions were permitted@ntive would have found an observabie
directly related to a non-observabjevhich would have to be forbidden as unphysicd. from

this vantage point, it was the finding in sectiorihdt only odd-integer charges may be observed
(aside from the tidal locketh=2) which lead to a physically admissible alignmehtn with |
which is the only observable angular momentum Cagsiomber.

At the final and perhaps deepest level, we turtht heart of quantum theory itself.
Since the earliest days of quantum theory, scisntiave sought to explain the existence of
guantization by imposing boundary conditions up@ves. For example, the so-called “particle
in a box” problems envision that two ends of a ailmg string are affixed to two walls on the
sides of a box, which of course then restrictsstineg to vibrating with a quantized number of
nodes between its two ends. Once de Broglie eéstaol wave particle duality, it became
possible to improve and extend the original Bohdelmf the atom and its treatment of angular
momentum by regarding the electron — in wavelikeaination — to be a closed circular string
vibrating in an orbit with a circumference whichas integral multiple of the wavelength of
vibration, where the electron velocity=Af and f =1/t is the frequency per time of this

vibration measured, for example, in cycles per sdcondeed, from this view, the requirement
that (4.4) be single-valued, (0) - ¢, (277) =¢, (0), which led to the standard DQC at (4.8),
the half-integer condition at (5.13), (5.14), aheé fractional condition at (11.7), is simply an

extension of the basic de Broglie approach of iffift both ends of a closed loop over
0< ¢ < 271 with continuity, so thatp =0 and ¢ = 27 effectively become the “boundaries” for
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imposing a boundary condition that there be coiitmuot only for the functionf (¢) which
specifies the periodic vibration, but also forderivativesof /d¢ andd*f /0¢>.

What does this have to do with roots of unity &meir possible relatiom=2j to the
total angular momentum? The root of unity relagidp (6.1) is the quintessential canonical
pure mathematicfoundation for specifying continuity as the bounydeondition at the extrema
of a 0<J< 27 closed loop domain. If we think of each root @fity as representing one
periodic cycle, then for ang'™ root of unity, the trivial root 1 will always bestted atg =0
and will make its first recycled reappearancepat2/r. In between, there will bex-1 roots all

spotted at equally-spaced orientations along theaimrtcle over theO< < 27 domain, at the
anglesd =2/m/m=2mQ of (6.2). If we then imagine that one might “\abe” this unit circle

so that the first node for each cycle is spotte@rsg of the unity roots, then what we have
effectively done is fitted a closed de Broglie want the complex plane and relied upon the
pure mathematics of roots of unity to do so by gshese roots to spot the start of each cycle in
the vibration. In short, roots of unity split upetunit circle with continuity ove®< < 277, just

like closed stationary de Broglie waves split u a8 < 27 domain in physical space with
continuity at each end of the domain.

But of course, the roots of unity exit in a compf@ane. So to talk about real, physical
angular momentum in the real physical space of p@€need to then map the root of unity
points out of the complex plane onto SO(3) and rdatee the behaviors of azimuthal
transformations on SO(3). This mapping onto SO8% earlier obtained in (8.15) to (8.17),
with (8.17) showing the azimuthal transformatioMs we can see, the root of unity angle
J=2rm/m has the exact same effect as a rotatidhrough ¢ =9 about the z axis,
supplemented by the Euclidean space and time tianafion (9.18) emanating from the factor

detr, (J) = exdi ), see (6.19), for which the operator matrix is Y9.80 there willalwaysbe

a rotationg =4 about the z axis, and further, depending uponstiecteds =2/m/m in the
unitary root of unity generator,, theremay also be a dilation or constriction of the spacd an
time axes owing to the transformation (9.18).

To explore this further, let us start with=3, because in this special case, as already
discussed toward the end of section 9 and also 1&.1)Y, Jd=2m/3 and so

exp(i ) = exffi 2n)= . Thus, form=3, there is no transformation occurring betweeacep
and time, and (8.17) becomes:

X cos{2zm /3 si{ zn /P X cdsnd 12p oD 120 )0
y |=|-sin(2m/3 cog zn /3 y|=| - sitn0 120 cfsO 120 |0y, (13.1)
z 0 0 1)\ z 0 0 1\ z

For the primitive rootsn=1,2, cos( 2m /3=-1/% and sin(2m /3 =2J3/z and for the
trivial n=0,3,6,9.. this becomes a 3x3 unit matrix and there is natimt at all,x - X* = x*,
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but we do not need to use these explicit values.Heather let's consider the set of all possible
closed de Broglie waves, which by definition musvé some integer number 1, 2, 3, 4,5, 6, 7...
of cycles per0 < ¢ < 277 to maintain a continuous closed loop. And lets@the question: what
is thesubsetof such closed waves which will remain invariantlar the transformation (13.1)?
The answer is evident from the above: any closedewehich completesn=3 full oscillations
over 0< ¢ < 27, i.e., any closed wave witin=3 cycles as its fundamental (first) harmonic will
be invariant under (13.1), because a three-cydsed wave rotated by some multiple 1&C

will be indistinguishable from the original close@ve before its rotation.

We mention the harmonics, because a close wavehigher 3Kk -cycle harmonics with
integer k =1,2,3,4.. will also be rotationally invariant under (13.1)hus, a 6 or 9 or 12...

cycle closed wave will also exhibit symmetry unddr2(® azimuthal rotation. However, by the
analysis of section 11, the even roots of umity 6,12,18.. are excluded by Lorentz symmetry,

and this means that the de Broglie waves with tlsasee numbers of cycles are also excluded.
So in reality the permitted higher harmonics 8f& with k=1,3,5,7.. likewise restricted to

being an odd integer. Further, while for3 the permitted higher harmonics &@gb5,21, 27.
cycles over the domaifi< ¢ < 277, these same harmonics are also the fundamentabhars of
the roots of unity for whichm=9,15,21,27.. And, of course, each &,15,21,27. is a non-

prime number, because each it is a multiple 058.we may associate the Lorentz-invariant root
of unity m=3 with the fundamental harmonic of an 3-cycle etbsle Broglie wave fitted to
0< ¢ < 27, and the higher, odd-multiple harmonics may be@ased with the fundamental

harmonic of a higher odd root which, mathematiga#iya non-prime number.

To provide a second example for contrast beforegemeralize, now let look at=5.
Here #=2rm/5 and (8.17) becomes:

X co(2zm /3 si{ 2zn /5 X
y :exp(i%mj —sin( 2m /9§ coé m /p y
z 0 1)\ z
(13.2)
cos(n172) S|r(nD72
= exp(i 6?77”} - sin(n072) coén[] 72 J
0 1

The factorexp(i 6m /9= co§ @n /5+i sift Bn /) now does give rise to a Euclidean space

and time transformation. The best way to apprdhishis using (9.18) with explicit sin and cos
values. Fom=5 and also setting = x andt =t,, the space and time transformation (9.18) is:

(:J - (ijsz(f;i((g//% ;ri Znﬂ //Q(tx]‘j (13.3)
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For the first cycle of angle§/m/5 with primitive rootsn=1,2,3,4, all of the sin and cos
functions reduce to those of eitherthe sin and cos off/5=36 or of 277/5=72. These are

sin(36) =44 10- 2/ 5= .587, cos(36)=1( ¥ 9= 809, sin(72)=1y 10+ 2/ 5= 951

and cos( 72 ( ]:F\/_E) .309, to four digits. These root expressions may b@iobd by

solving the polynomlalz X =0 of (6.14) form=5, or geometrically manipulating the angles

on a regular pentagon, or they may be looked upd &f course the numeric values of sin and
cos may be obtained from any table or any calculafor the trivial root ah=5 we simply have

cog( 6m) = landsin(67m) = Othus y* - x'* = x* as was the case for all the roots in (13.1).

Using these explicit values of sin and cos, rfm{lll} which usingnmod, 5 is the set

:{i]} which we are seeking to connect to the angular emom |, = +1, and obtaining the

correct sign for sin and cos by subtracting off &ykcles through2/7 then rotating the remainder
angle into the upper-rigf@< 4 < 9¢° quadrant, (13.2) becomes, for= 1 respectively:

N (v _(-cos(m /g = sim , -1+ #/10- /5|4
(-t s e

_ (8090 F.5878(t')_(-.809Q’ ¥ .587%&
+.5878 —.8090( x' ) |-.8090¢ + .5878

For n={2,3 which vianmod, 5 is the setn={+2} that we seek to connect tp=+2, using
the same procedure, (13.2) becomesnfert2 respectively:

(13.4)

AR R e 1 A L e 14

X X Fsin( 27/ co 2r / 4| _ _ X
_(.3090 +.9513(t')_(.309a’ + .951¢
F.9511 .3090)( x' ) (.3090¢ F .951%
To make the nature of this discrete (quantized)i&e&n space and time transformation
for the fifth rootm=5 very clear, from (13.4) fon=+1 we may extract:

t') =-.809Q’ + .587&’

| | (13.6)
=-.8090X T .5878

while from (13.5) forn=+2 we extract:
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t') =.309Q’ + .951¢

. | y (13.7)
X! =.3090¢' ¥ .951¢

We see how these look like Lorentz transformatitmis,as seen in section 9, thesekuelidean

rotations between space and time which preserveinveriance of the Minkowski interval
t?-r? in flat spacetime and are generally characteripgdthe extended metric equation
ds’ =g, d¥ dk= g, &" 4" of (9.16) which preservess’ = df'- dr* on any geodesic

tangent space witlg,,, - 77, andg,, - 17,,.

As with (13.1), any closed stationary de Brogliaver withm=5 cycles over0< ¢ < 2r7
and higher5[k harmonics will remain rotationally-invariant und@3.2). To preserve Lorentz
symmetryk must be an odd integer, and of course these wailesimply be the fundamental
harmonic of the non-prime root of unitm=5[k, which will necessarily include non-primitive
roots beyond the number 1 itself. Therefore, dogexl wave closed wave with=5 cycles as
its fundamental (first) harmonic will be rotatiolyalnvariant under (13.2), because the three-
cycle closed wave rotated by some multiple7@ will be rotationally indistinguishable from
the original wave before the transformation rotaticHowever, the time and space coordinates
ascribed to this closed wave will not be invariamider (13.2), but rather will transformed
according to (13.3) which leads to the specifisckte Euclidean space and time mixing of
(13.4) to (13.7). This means two things: Firdttlee closed de Broglie wave has a radius

r =4x*>+y®+ 7> before the transformation (13.2) is applied, ill viave a different radius

x'?+y'?+ Z? following transformation. Second, if the time=1/ f associated with the
vibrational frequency ig =/t > +ty2 +t,? before transformation, then following transforroati
it will become t'=Jt2+t,2+t,>. Because each ok’ =(xy 2 and t’ :(tx,ty,tz)T

transforms in an identical manner under (13.3)ferfifth roots of unityn=5, this means (13.6)
for n=%1 and (13.7) fom = £2 respectively, may be written directly in termg @ndt as:

t'=-.8090 + .5878

, (13.8)
r'=-.8090 F .5878
and:
t'=.3090 + .951d
(13.9)

r'=.3090 F .95111

Now, restoring natural constants andc, let us the Bohr radiug, =7/ ma as a
reference length against which to specify the mdiof the closed de Broglie wave whemg is

the electron rest mass and =¢€/4mhc is the running electromagnetic coupling which
approached/137.036. at low probe energies. Let us then posit thattbsed de Broglie wave
with m=5 cycles over 0<¢ <2, prior to the transformation (13.2), has a radius
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r = pa, = phl m,ca where p is some dimensionless factor for which the Bolliusiused as a
reference length. That isjis p tme the Bohr radius. The circumference of thisetl wave is

then C =27 = p2ma, = p2rth Im, ar , keeping in mind also that =277 . Because there are
m=5 cycles fitted into the circumference, the wawgté of this de Broglie wave will be:

A=CI5=2mr |5=p2ma,/5=p2th | ar=ph/5m a. (13.10)

The momentum using de Broglie’s wave-particle dydbrmula is thenp=h/ A, so that at the
radial distance = pa, = pi/ m,ca , the angular momentumpr will be:

pr :m:hp—hM:5£:5h. (1311)
A m,ca p27h 2

p=h/A - p=hi24
p=mv

E=1imv S

This leads to several conclusions. First, the Emgmomentum of a de Broglie wave
with a fixed number of cycles pdr< ¢ < 277 is invariant with respect to the radius If the
radius is increased by a factpgr>1, we wavelength will diminish by the same factar, & net
cancellation as seen in (13.11). Second, the abomnity which in this case iB=5 is in fact
synonymous with the angular momentum of this degbBeowave, because: =1 is the
elementary, quantized unit of angular momentumaitural units. Likewise, it is clear that for
any of the other odd roots of unity=1,3,5,7.. permitted under Lorentz symmetry as reviewed

in section 11, the result will be exactly the sathaf is, in general, for a de Broglie wave which
is rotationally-invariant under the roots of unitansformation (8.17) with? =27/m/m for a
givenm, the angular momentum of that de Broglie waveatural unitsi =1, will be:

pr=m=13,5,7... (13.12)

Therefore it does indeed make sense to associate ob unity with angular momentum via
j =m/2 as was found in (12.16), and if we combine (12wi@) (13.2) we find that:

(13.13)

j=l+i=l4s=T
2 2

:E:
2

N~
N w
N o
RN

The above associates the total angular momentisim@anumbeyj with pr/2 of the de

Broglie wave, including the factor ¥2 which is remui to match up these two results. This factor
is a direct indication of the fact that fermiong.eelectrons, are observed with spins which have
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half a unit of 2, but that orbital angular momenta come in wholgsuof 7. This is most readily
seen if we rewrite (13.13) as

pr=21+1=2+ 3= 2. (13.14)

With =0, this becomegpr =1=2s. Were we to have sgir = m= j=1+s=1,3,5,7.. without

the factor of %2, then fde=0 we would haves=1, which is not empirically correct, and for non-
zerol we would have had =3,5,7.. which is also not empirically correct. The radaship
(13.13) achieves three correct results: First,stimallest permitted total angular momentum is
+h. Second, other permitted angular momenta addemnaits ofl7 to this half unit of angular
momentum. Third, the factor of 2 compensates Hat fact thatm=1,3,5,7.. must be an odd
integer to maintain Lorentz symmetry, and this eesuhat the angular momentum increments
above 17 come in units ofz, rather than units oR7z. In short, (13.13) comports closed de
Broglie waves to angular momenta actually obseeragirically.

Thus, in answer to the question earlier posed, awe lshown that it does make sense on
theoretical and physical grounds to directly comnie fractional denominators), which
originate from them™ roots of unity in (6.1), with the total angular mentum via

m:2j:2(l+s) found in (12.16). And so, we conclude thgbplying a root of unity
transformation is indeed synonymous with transfagmihat electron into a different state of
orbital angular momentumNow the root of unity transformation (6.12) ist st some abstract

mathematical operation; it the symmetry operatiowhich alters the orbital angular momentum
of electrons.
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