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Abstract:  It is widely believed that Dirac magnetic monopoles and their related electric charges 
must be quantized, and that any fractional charges one might posit cannot exist without creating 
forbidden observable singularities.  Here, we explicitly present a vector potential for a Dirac 
monopole with fractional magnetic and electric charges whose curl is a Coulomb magnetic field 
and which potential has no observable singularities.  We then demonstrate how these fractional 
charges are projected onto SO(3) from topological covering groups with generators which are 
the generalized mth roots of the 2x2 identity matrix I, situated at various Euler angles on the 
complex plane of the covering group generators, all without observable singularities.  We also 
show how this projection gives rise to a form of Euclidean transformation between space and 
time which preserves the invariance of the Minkowski interval t2-r2 in the geodesic coordinates 
of flat spacetime.  Finally, we show that although fractional charges are permitted without 
observable singularities, these fractional denominators are naturally restricted by helicity 
considerations to the odd integers 1, 3, 5, 7… and the even integer 2, while other even number 
denominators 4, 6, 8… are precluded, which is precisely the same charge pattern observed in the 
Fractional Quantum Hall Effect (FQHE).   
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1. Introduction 
 
 In 1931 Dirac [1] discovered that if magnetic charges with strength g were to 
hypothetically exist, this would imply that the electric charge strength e must be quantized.  The 
relationship he found, often written as 2eg n=  where n is a positive or negative integer or zero, 
came to be known as the Dirac Quantization Condition (DQC).  In the mid-1970s, to remediate 
the fiction of Dirac’s “nodal lines” which subsequently became known as Dirac strings, Wu and 
Yang [2], [3] developed an approach which achieves completely equivalent results “without 
strings,” with the only difference being that it is cast in the more-modern language of fiber 
bundles.  In the Wu Yang approach, one uses U(1)em gauge theory to obtain the differential 
equation 2i ie de i egdϕ− Λ Λ =  (to be derived at (4.2) infra) where Λ  is the gauge (really, phase) 
angle and ϕ  is the geometric azimuth about the z-axis in the three dimensional physical space of 
the rotation group SO(3).  This equation is easily seen to be solved for constant electric and 
magnetic charge strengths by ( ) ( )exp exp 2i i egϕΛ =  (at (4.3) infra). 

 
It has long been believed that the only solution to this latter Wu-Yang equation which is 

free of observable singularities, is 2eg n=  (at (4.7) infra).  This is in fact true if (as will be 
discussed in section 5 infra) one neglects the fact that spinors also change their “version” when 
rotated over a 2π  circuit on SO(3) (see section 41.5 of Misner, Thorne and Wheeler’s [4]), and 
also neglects the existence of roots of unity generators (section 6 infra) which likewise modify 
the electron version.  But if we fully account for these version changes including a careful 
consideration of roots of unity it becomes possible to expand this solution to include non-
singular fractional charges of the form 2 /eg n m=  where m is a second integer specifying the 
fractional charge denominator (at (11.7) infra).  This paper will detail how these fractionally-
charged monopoles, and their related fractionalized electric charges, may arise without 
observable singularities.  What is especially intriguing is that the singularity-free denominators m 
are not permitted to take on any integer value.  Rather, considerations of helicity and charge 
continuity require restriction to the denominators 1,2,3,5,7,9...m = , which are precisely the 
same fractional charge denominators experimentally observed in the Fractional Quantum Hall 
Effect (FQHE) [5]. 
 
PART I:  A REVIEW OF THE GAUGE THEORY OF DIRAC MONOPOLES   
 
2. Local U(1)em Gauge Transformations, In General 
 

We begin by considering a first electron wavefunction ( )xµψ +  which is related to a 

second electron wavefunction ( )xµψ −  by the local U(1)em gauge transformation (throughout, we 

shall employ natural units 1c= =ℏ ): 
 

( )exp iψ ψ ψ ψ+ + + −′→ = Λ ≡ , (2.1) 
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where the phase angle ( )xµΛ  varies locally as a function of the spacetime coordinates as do the 

wavefunctions ( )xµψ .  Transformation (2.1) is often written simply as ( )exp iψ ψ ψ′→ = Λ , but 

by placing the label ψ +  on ψ  and then ψ −  on ψ ψ− +′≡ , we lay the foundation for easily 

introducing the “north” and “south” gauge patches to study monopoles starting in section 3. 
 

Next, we define a gauge potential ( )A xµ
µ+  to be an electromagnetic vector potential 

corresponding with the wavefunction ψ + , and we then use this to define the gauge-covariant 

derivative D ieAµ µ µ+ +≡ ∂ +  where e is the (running) electric charge strength, and where the sign 

of ieA µ+  is positive because we are using a Minkowski metric tensor ( ) ( )diag 1, 1, 1, 1µνη = − − −  

versus the oppositely-signed convention.  Applying this derivative to each side of ( )exp i ψ +Λ  in 

(2.1), we obtain: 
 

( )( ) ( ) ( )( )
( ) ( ) ( )

( )

exp exp

exp exp exp

exp

D i ieA i

i i i ieA i

i ieA i

µ µ µ

µ µ µ

µ µ µ

ψ ψ

ψ ψ ψ

ψ ψ

+ + + +

+ + + +

+ + +

Λ = ∂ + Λ

= ∂ Λ Λ + Λ ∂ + Λ

  = Λ ∂ + + ∂ Λ  

. (2.2) 

 
Based on the inner-bracketed expression in the bottom line above, we define a second, 
transformed gauge potential A Aµ µ− +′≡  corresponding with the wavefunction ψ −  according to: 

 
eA eAµ µ µ− += + ∂ Λ . (2.3) 

 
Then, defining a second covariant derivative D ieAµ µ µ− −≡ ∂ + , (2.2) simplifies to: 

 

( )( ) ( ) ( )exp exp expD i i ieA i Dµ µ µ µψ ψ ψ+ + − + − + Λ = Λ ∂ + = Λ  . (2.4) 

 
The foregoing represent a fundamental proposition of local gauge theory: the local gauge 
transformation (2.1) acting on a fermion ψ  must be compensated by the introduction of a gauge 

fields Aµ  transforming according to (2.3) in order to maintain gauge invariance of the 

electrodynamic Lagrangian and its related field equations.  The logical consequence of this 
proposition is Maxwell’s electrodynamics. 

 
The gauge transformation (2.3) may readily be divided through by e and rewritten using 

the mathematical identity i ii e eµ µ
− Λ Λ∂ Λ = ∂  as: 

 
/i iA A e e ieµ µ µ

− Λ Λ
− += + ∂ . (2.5) 

 
Further, one may generally pack a vector potential into the differential one-form A A dxµ

µ= .  

Therefore (2.5) compacts and rearranges into: 
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/i iA A e de ie− Λ Λ

− +− = . (2.6) 

 
This tells us that these two gauge fields A−  and A+  differ from one another by no more than a 

U(1)em gauge transformation, which is apparent because these are just relabeled names for the 
one-forms A and A′  transforming according to /i iA A e de ie− Λ Λ′ = + .  Therefore, these two gauge 
fields are not observably-distinct. 
 
3. A Coulomb Magnetic Field which is the Curl of a Vector Potential, 

i.e., a U(1)em Magnetic Monopole 
 

The electromagnetic field strength two-form 1
2F F dx dxµ ν

µν=  is generally related to the 

vector potential by F dA= , and so is a locally-exact two-form.  Extracting the electric / 
magnetic bivector Fµν , the space components of the field strength tensor are ij i j j iF A A= ∂ − ∂ .  

The magnetic field vector k
ij ijkF Bε= −  where ijkε  is the antisymmetric Levi-Civita tensor and 

123 1ε = + , and where ( ), ,k
x y zB B B B= =B  in Cartesian coordinates.  Likewise, using 

( ) ( )diag 1, 1, 1, 1µνη = − − −  to lower indexes in ( ) ( ), , , ,x y zA A A Aµ φ φ= =A , and with 

( ), ,i x y z∂ = ∂ ∂ ∂∇ =∇ =∇ =∇ = , this means that k
ij ijk i j j iF B A Aε= − = ∂ − ∂  , or = ×B A∇∇∇∇ .  So whenever 

we have F dA=  in general for a given potential, the magnetic field B will be the curl of the 
vector potential × A∇∇∇∇ . 

 
Now, by way of reviewing known monopole physics, let us define the two four-vector 

potentials in A−  and A+  of the last section such that these are the potentials for a Coulomb 

magnetic field B which is the curl of these vector potentials, = ×B A∇∇∇∇ , that is, let us now define 
the gauge potentials for a magnetic monopole.  We do this by simply postulating a form for these 
potentials, then showing that these do in fact reproduce a Coulomb magnetic field with 

= ×B A∇∇∇∇ . 
 
We start by positing a (running) magnetic charge strength g for such a monopole, and 

then postulate each of the potential one-forms A−  and A+  in a spherical coordinate basis to be: 

 
( )
( )
cos 1

cos 1

A g d

A g d

θ ϕ
θ ϕ

+

−

≡ −

≡ +
. (3.1) 

 
Confining our domain to 0 θ π≤ ≤ , A+  is “northerly” because it is defined everywhere except 

for θ π= , i.e., except due south of the origin, while A−  is a “southerly” potential defined 

everywhere except for 0θ = , i.e., except due north of the origin.  Often these are referred to as 
the north and south gauge patches, NA A+≡  and SA A−≡ , and we see via (2.6) that these differ 

from one another simply by a gauge transformation and so are not observably-distinct.  We now 
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show that these will indeed produce a Coulomb magnetic field for which the curl = ×B A∇∇∇∇  for 
both of the vector potentials +A , −A . 

 
 First, we hold g constant, 0dg = , that is, we do not let g run over the region of spacetime 
in question.  Now, because differential forms geometry teaches that 0dd =  in general and thus 

0ddϕ =  in this specific setting, this all means that: 
 

cosF dA dA gd dθ ϕ− += = = . (3.2) 

 
Therefore, for either potential, the magnetic field + −= × = ×B A A∇ ∇∇ ∇∇ ∇∇ ∇  is the curl of the gauge 

potential, as desired. 
    
 Of course, 0dF ddA ddA− += = =  via the same identity 0dd = , which means that F is 

closed and locally exact.  But it is not globally exact.  Specifically, if we integrate (3.2) over a 
closed two-dimensional surface with g still held constant, and if we also apply Gauss’ / Stokes’ 
theorem, then: 
 

2 2

0 00 0
cos cos cos 4dF F gd d g d d g g

π π π πθ ϕ θ ϕ θ ϕ π= = = = = −∫∫∫ ∫∫ ∫∫ ∫ ∫� � . (3.3) 

 
The fact that we are holding g constant throughout the spacetime region of the integration is 
reflected by our having moved g outside the integral after the third equal sign above.  Now let us 
specifically pinpoint the magnetic field. 
 
 To do so, we consider the circumstance under which the electric fields vanish, that is, 
under which 0 0 0k kF F= − = =E .  In this circumstance, 1 1

2 2
i j

ijF F dx dx F dx dxµ ν
µν= =∫∫ ∫∫ ∫∫� � � .  

Then, using this in (3.3) also in view of k
ij ijkF Bε= − , we find that: 

 
1 2 2 3 3 11

12 23 312 4F F dx dx F dx dx F dx dx F dx dx gµ ν
µν π= = + + = − ⋅ = −∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ B dS� � � � � � . (3.4) 

 
So from the final equality above, this means that: 
 

4 gπ µ⋅ = =∫∫ B dS� , (3.5) 

 
where 4 gµ π≡  is defined as the total magnetic flux across the closed surface.  Conversely, the 
magnetic charge strength / 4g µ π=  represents the steradial density of magnetic flux across the 
closed surface.  This, of course, is Gauss’ law for magnetism in integral form, but with a non-
zero magnetic flux µ  across the closed surface.  Thus, this is the integral formulation of Gauss’ 
law for a non-vanishing magnetic monopole.  Because this was arrived at using E=0 in (3.4), 
(3.5), there are no electric fields induced by this monopole, and as a result, (3.5) describes this 
magnetic monopole at rest. 
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 Now, in general, Coulomb’s law cannot be derived from Gauss’ law alone.  However, if 
the magnetic monopole is stationary – which it is because 0=E  in (3.4) and (3.5) – then the 
magnetic field B in (3.5) will be exactly spherically symmetric.  As a result of this spherical 
symmetry, we may remove B from the integrand in (3.5), thus writing: 
 

24 4r gπ π µ= ⋅ = =∫∫B dS B� . (3.6) 

  
Because of the spherical symmetry, only the radial component rB  of B will be non-zero, that is, 

in spherical coordinates, we will have ( ) ( ), , ,0,0r rB B B Bϕ θ= =B .  Therefore, (3.6) now yields:  

 

2 24r

g
B

r r

µ
π

= = . (3.7) 

 
This is indeed a Coulomb magnetic field which has a (constant) magnetic charge strength g, and 
for which the total magnetic flux across any closed surface is 4 gµ π= .  Furthermore, this 

Coulomb magnetic field is the curl of the vector potentials, + −= × = ×B A A∇ ∇∇ ∇∇ ∇∇ ∇ .  Consequently, 

we have completed our review of how the potentials postulated in (3.1) do in fact specify a non-
vanishing Coulomb magnetic field with = ×B A∇∇∇∇ . 
 

Now, we begin to examine the full set of conditions under which this Coulomb magnetic 
monopole with = ×B A∇∇∇∇  does not give rise to any observable singularities. 
 
4. Conditions under which the U(1)em Magnetic Monopole has No 

Observable Singularities: The Standard Dirac Quantization Condition 
 
 Returning to (3.1), we first find that the difference: 
 

2A A gdϕ− +− = . (4.1) 

 
Combining the above with (2.6) then yields the Wu-Yang [2], [3] differential equation: 
 

/ 2i ie de ie gdϕ− Λ Λ = . (4.2) 
 
This differential equation is solved for constant e and constant g, i.e., for 0de=  and 0dg =  by: 
 

( ) ( )exp exp 2i i egϕΛ = , (4.3) 

 
as is easily seen by plugging (4.3) back into the left hand side of (4.2) then reducing. 
 
 We next employ this solution to operate on ψ + , which combined with (2.1) yields: 

 

( ) ( )exp exp 2i i egψ ψ ψ ψ ϕ ψ+ + − + +′→ = = Λ = . (4.4) 
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Clearly, for 0ϕ = , we have (0)ψ ψ− += .  Now, let us move this wavefunction through the 

Coulomb magnetic field of (3.7) around a closed curve in the azimuthal direction, going from 
0ϕ =  to 2ϕ π= .  When this single circuit about the monopole is complete, from (4.4) with 
2ϕ π=  we obtain: 

 

( ) ( )exp exp 4i i egψ ψ ψ ψ π ψ+ − + + +′→ = = Λ = . (4.5) 

 
Now let’s turn to the question of observable singularities. 
 
 To avoid observable singularities, it is required that the electron wavefunction at 2ϕ π=  
be the same wavefunction as it is at the geometrically identical azimuth 0ϕ =  on SO(3), in other 

words, that it have the single value  ( ) ( ) ( )0 2 0ψ ψ π ψ+ + +→ =  and not multiple values at the 

same azimuthal orientation on SO(3).  This requirement will be satisfied if and only if: 
 

( ) ( ) ( )exp exp 4 1 exp 2i i eg i nψ ψ ψ ψ π ψ ψ π ψ+ − + + + + +′→ = = Λ = = ⋅ = , (4.6) 

 
which, with ( )1 exp 2i nπ=  where n is a positive or negative integer or zero, means if and only if: 

 
2 1,2,3,4...eg n= = . (4.7) 
 
Using / 4g µ π= , this may alternatively be expressed as 
 

2e nµ π= . (4.8) 
 
These are two different but equivalent ways of stating the standard Dirac Quantization Condition 
(DQC).  From (4.7), we see that the electric charge strength is quantized in units of 1

2 /e n g= , 

and reciprocally, that the magnetic charge strength is quantized in units of 1
2 /g n e= .   

 
 With condition (4.7) imposed, (4.4) becomes: 
 

( ) ( )exp expi inψ ψ ψ ψ ϕ ψ+ − + + +′→ = = Λ = , (4.9) 

 
which contains the implied quantized relationship: 
 

nϕΛ =  (4.10) 
 
between the phase angle Λ  and the azimuth angle ϕ .  So during the course of traversing a 
circuit from 0ϕ =  to 2ϕ π= , (4.10) tells us that what Dirac often refers to in [1] as the 
observable “change in phase round” a “closed curve” becomes: 
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2 2 ,4 ,6 ,8 ...nπ π π π π∆Λ = = , (4.11) 

 
where we use the ∆  subscript to make clear that this is a change in phase, not an absolute phase.  
In other words, keeping in mind that only a change in phase but not an absolute phase is 
observable, (4.11) tells us that the change in phase over a single closed azimuthal circuit must be 
an integral multiple of 2π  in order to avoid observable singularities.  Because all phase angles 
with 2 nπΛ =  have identical orientation and magnitude in the complex phase space defined by 

( )exp cos sini i a ibΛ = Λ + Λ ≡ + , (4.11) tells us that to avoid observable singularities as 

specified by (4.6), the phase difference must be 2 nπ∆Λ =  whenever the electron returns to its 

original azimuth orientation.  For purposes of discussion, we shall refer to this 2 nπ∆Λ =  phase 

difference with like-orientation for the initial and final phases as a “return to phase.” 
 
 Using the quantization condition (4.7) we may finally return to (3.1) to write the 
monopole potentials as: 
 

( )
( )

1
2

1
2

cos 1

cos 1

eA n d

eA n d

θ ϕ
θ ϕ

+

−

= −

= +
. (4.12) 

 
It is sensible that for charge strengths which are quantized, the associated potential energies will 
likewise be quantized as above. 
 
 All of the foregoing summarizes the present-day understanding of U(1)em magnetic 
monopoles and the quantization condition 2eg n=  of (4.7) which is understood to be required if 
these monopoles are to exist without observable singularities.  But there are other charge 
conditions which may also exist without observable singularities.  These will be the focus of the 
remainder of this paper. 
 
PART II:  DIRAC MONOPOLE CHARGES WITH HALF-INTEGER FRACTIONS 
 
5. Tidally-Locked Electron Wavefunctions and Half-Integer Fractional 

Monopole Charges based on Wavefunction Version 
 
 In the derivation of the Dirac Quantization Condition just reviewed, there is an unstated 
assumption that the electron wavefunction, over the course of its circuit about the monopole 
from 0ϕ =  to 2ϕ π= , it not itself undergoing any rotation.  But now let us examine what 
happens if the electron itself rotates in a “tidal lock” with the monopole as it traverses the 
monopole (as the moon does when it traverses the earth such that the far side of the moon is 
never visible from earth), so that in the course of traversing from 0ϕ =  to 2ϕ π=  about the 
monopole the electron also rotates through 2π  via the rotation group of SU(2) which is the 
universal cover of SO(3).  This is important for two reasons.  First, this will establish that a half-
unit magnetic charge 2 / 2eg n=  can also exist without observable singularities.  Second, this 
will provide the template for showing in sections 10 and 11 how additional fractional charges 
may also exist without observable singularities. 
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 We start with the three 2x2 Pauli matrices iσ  of SU(2), posit three associated angles iθ  

in the physical space of spacetime, and form the matrices ( )exp / 2i i iU iσ θ= which are unitary, 
† 1U U = , given that †

i iσ σ=  are Hermitian, which iU  matrices describe rotations through 

respective angles , ,i x y zθ θ θ θ=  about each of the x, y, z axes.  It is well-known how to use the 

series ( ) 2 3 41 1 1
2! 3! 4!exp 1 ...ix ix x i x x= + − − +   together with the fact that 2n

i iIσ =  and 2 1n
i iσ σ+ =  

to flesh out these unitary matrices, each of which has det 1iU =  into the well-known: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

1 11
1 1

1 1

2 22
2 2

2 2

3 33
3 3

3 3

3

3

cos / 2 sin / 2
exp

sin / 2 cos / 22

cos / 2 sin / 2
exp

sin / 2 cos / 22

cos / 2 sin / 2 0
exp

0 cos / 2 sin / 22

exp / 2 0

0 exp / 2

i
U i

i

U i

i
U i

i

i

i

θ θθσ
θ θ

θ θθσ
θ θ

θ θθσ
θ θ

θ
θ

  = =   
   

  = =    −   

 + = =    −   

 
=  − 

. (5.1) 

 
 Continuing with the natural units 1c= =ℏ  let us next consider an electron traveling with 

velocity vβ =  along the z axis and thus the Lorentz contraction factor 21/ 1 vγ = − .  As is 
often done, we may then define the boost parameters coshχ γ≡  and sinhχ γβ≡ , and write the 
Lorentz transformation as the hyperbolic “rotation”: 
 

cosh sinh

sinh cosh

t t t

z z z

χ χ
χ χ

′      
→ =      ′      

 . (5.2) 

 
Several of the points to now be developed are found in [6], amidst pages 36 to 42. 
 
 The electron wavefunction ψ  is a four-component Dirac spinor which we can denote by 

( ),T T Tψ ξ η= , where ξ  and η  are each two-component spinors with all components interrelated 

via Dirac’s equation ( ) 0i mµ
µγ ψ∂ − = .  Under a transformation (5.2) defined by the Lorentz 

group SO(1,3), which includes a general boost χ  and spatial rotation through θ  on SO(1,3), 
these spinor components will transform on SL(2,C) according to: 
 

( )( )
( )( )

exp / 2 0

0 exp / 2

i i

i i

ξ ξ ξ
ψ ψ

η η η
 ⋅ −′     ′  = → = =      ′ ⋅ +      

σ θ χ

σ θ χ
, (5.3) 
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where iσ=σ  are the 2x2 Pauli matrices.  So for a non-relativistic electron with 0→χ  

undergoing simply a rotation without boost, this simplifies to: 
 

( )
( ) (2) (2)

exp / 2 0
exp

0 exp / 2 2

i
I i I U

i

ξ ξ ξ
ψ ψ ψ ψ

η η η
′  ⋅       ′= → = = = ⊗ ⋅ =        ′ ⋅        

σ θ θ
σ

σ θ
, (5.4) 

 
where (2)I  is a 2x2 identity matrix.  For an azimuthal rotation through 3θ ϕ=  about the z axis 

only, this becomes ( )(2) 3 (2) 3exp / 2I i I Uψ ψ σ ϕ ψ ψ′→ = ⊗ = ⊗ , for which the unitary matrix 3U   

is explicitly given by the third relation in (5.1) with 3θ  replaced by ϕ .  Thus, (5.4) for an 

azimuthal rotation only will operate identically upon each of the two-spinors ,ξ η .  So for ξ : 
 

( ) ( )
( ) ( )3 3

cos / 2 sin / 2 0
exp

0 cos / 2 sin / 22
A

B

i
U i

i

ϕ ϕ ξϕξ ξ σ ξ
ϕ ϕ ξ

 +   ′ = = =     −    
, (5.5) 

  
and likewise for when η  replaces ξ .  The need to consider the spinors ξ  and η  together in the 

four-component Dirac wavefunction ( ),T T Tψ ξ η=  arises because these are interchanged ξ η↔  

under parity, but when the boost is removed the overall ψ  as well as each of ξ  and η  will 
transform in identical fashion.  We finally consolidate the operation (5.5) on both ,ξ η  into one 

expression, using the ψ ψ +→  labelling of (2.1), as such: 

 

( ) ( )
( ) ( )

( )
( )

(2) 3 (2) 3exp
2

cos / 2 sin / 2 0 exp / 2 0

0 cos / 2 sin / 2 0 exp / 2

I i I U

i i

i i

ξ ξ ϕψ ψ σ ψ ψ
η η

ϕ ϕ ϕξ ξ
ϕ ϕ ϕη η

+ +
+ + + +

+ +

+ +

+ +

′     ′= → = = ⊗ = ⊗     ′     

   ± ±   
= =      ± ±      

,(5.6) 

 
with the ±  signs denoting the respective operations on each component of ( ),T A Bξ ξ ξ+ + +=  and 

( ),T A Bη η η+ + += .  This is a more explicit form of (5.4) for an azimuthal rotation with 

3 3 3σ θ σ ϕ⋅ = =σ θ , also adopting the labelling of (2.1). 

 
 Now, let us return to the gauge transformation ( )exp iψ ψ ψ+ + +′→ = Λ  of (2.1) and 

contrast this against (5.6).  As already noted, now quoting Dirac from page 63 of [1], “the value 
of [the phase] at a particular point has no physical meaning and only the difference between the 
values of [the phase] at two different points is of any importance.”  So, if we are comparing 
phases as between two different azimuthal points (for the non-relativistic electron presently 
under examination), then we should also inquire whether the electron has been rotated at all 
when moving from one such point to the next.  If the electron has not rotated but the phase has 
changed, then the transformation will be ( )exp iψ ψ ψ+ + +′→ = Λ  from (2.1).  Conversely, if the 

electron has rotated but the phase has not changed, then the transformation will be 
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( )(2) 3exp / 2I iψ ψ σ ϕ ψ+ + +′→ =  from (5.6).  But, if both the phase has changed and the electron 

has rotated, then the complete transformation will be a combination of the operations from both 
(2.1) and (5.6), namely: 
 

( ) ( )(2) 3 (2) 3 (2) 3exp exp exp exp
2 2

I U i I i i I i
ϕ ϕψ ψ ψ σ ψ σ ψ+ + + + +

   ′→ = ⊗ Λ = ⊗ Λ = ⊗ + Λ   
   

. (5.7) 

 
With (5.7) we are now equipped to ask what happens if the electron makes a complete circuit 
about the monopole through a 2π  azimuth and simultaneously does so in a tidal lock with the 
monopole and so also rotates through 2π , all on SO(3).   
 

To avoid observable singularities, as in section 4, we must still have a single-valued 
electron after the full 2π  circuit is complete, that is, we must still have (2 ) (0)ψ ψ π ψ+ + +′ = = .  

But now, the condition required to avoid a singularity will be given by ψ ψ+ +′ =  with 2ϕ π=  in 

(5.7), that is, by: 
 

( ) ( ) ( ) ( )(2) 3 (2) 3 (4) (4)exp exp exp exp 2I i i I i I I i nψ ψ σ π ψ σ π ψ ψ π ψ+ + + + + +′→ = ⊗ Λ = ⊗ + Λ = = .(5.8) 

  
This will be recognized as an eigenvalue equation ( ) ( )( )(2) 3 (4)exp exp 2 0I i I i nσ π π ψ +⊗ + Λ − =  

for the phase difference ∆Λ , where (4)I  is the 4x4 identity matrix, and of course ( )1 exp 2i nπ=  

for all integers n. 
 

But in this particular case we can deduce from (5.5) with / 2ϕ π=  that ( )3exp i Iσ π = −  

so that ( )3 (4)expI i Iσ π = −  which produces a sign reversal.  Therefore, with 0ϕ =  and 2ϕ π=  

explicitly denoted, (5.8) can be reduced to: 
 

( )(0) (2 ) exp (0)iψ ψ ψ π ψ ψ+ + + + +′→ = = − Λ = . (5.9) 

 
So to avoid an observable singularity when the electron traverses the monopole in a tidal lock, 
given, mathematically, that ( )( )1 exp 2 1i nπ− = − , and in contrast to (4.6), we must now have: 

 

( ) ( )( )exp exp 2 1i i nψ ψ π ψ+ + +Λ = − = − . (5.10) 

 
As a result, for the tidal-locked electron, (5.10) tells us that after a single 2π  circuit the change 
in phase will be: 
 

( )2 1 ,3 ,5 ,7 ...nπ π π π π∆Λ = − = , (5.11) 

 
which is an odd-integer multiple of π , contrast (4.11) which is an even-integer multiple of π . 
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Most importantly, if combine (5.10) with the Wu-Yang equation (4.4) also obtained from 
a single 2π  circuit about the monopole, that is, if we combine (5.10) with (4.4) for 2ϕ π= , we 
now obtain: 
 

( ) ( )( ) ( ) ( )exp exp 2 1 exp 2 exp 4i i n i eg i egψ π ψ ϕ ψ π ψ+ + + +Λ = − = = . (5.12) 

  
From ( )( ) ( )exp 2 1 exp 4i n i egπ ψ π ψ+ +− =  above, we may finally extract ( )2 1 4n egπ π− =  

which reduces to: 
 

3 5 71 1
2 2 2 2 22 , , , ...eg n= − = , (5.13) 

   
for 1,2,3,4,5...n = .  Contrasting the usual DQC 2eg n=  of (4.7), we see that to avoid 
observable singularities for a tidally-locked electron which rotates in synchronization with its 
circuit about the monopole, we must now have a Dirac quantization condition for which the 
charges are half-integer charge fractions that skip over the whole integer charges.  If we then 
merge (4.7) for an electron that does not rotate (no tidal lock) with (5.13) for an electron that 
does maintain a tidal lock during its circuit about the monopole, we may combine these together 
to write a fractional DQC which includes half-integer electric and magnetic charges, given by: 
 

2 ; 0,1,2,3,4...; 1,2
n

eg n m
m

= = = , (5.14) 

 
precisely as was stated in the opening paragraph of this section.  Now, let’s step back and discuss 
what has happened here. 
 
 We see from (5.4) that a Dirac electron houses two spinors ξ , η  which transform 
identically under pure rotations sans boost.  It is well-known, as elaborated by Misner, Thorne 
and Wheeler (MTW) in their classic exposition at section 41.5 of [4] that a spinor changes its 
sign every time it undergoes a 2π  rotation, and only regains its original sign after a 4π  rotation.  
We discuss this by saying that an electron changes its “version” after a 2π  rotation and only 
recovers its original version after 4π .  MTW analogize this version change to the macroscopic 
and entirely classical “orientation-entanglement” phenomenon wherein an object connected to its 
environment by a set of threads will only regain its original state of entanglement after it is 
rotated twice over 4π , but will have an opposite entanglement following only a 2π  rotation.  
But it is not necessary here to use this macroscopic analogy.  Equation (5.9) makes clear that at 
the quantum level, the sign of the electron wavefunction will invert following a 2π  rotation and 
only be restored after 4π , and this is because a θ -angle rotation on SO(3) is implicitly 
accompanied by a half angle / 2θ  rotation on SU(2).  (This exact connection will be reviewed in 
section 8, see (8.10) through (8.12) supra.)  This change in version is seen most directly by using 

3U  with 3θ ϕ=  to operate on ξ  as such: 

 

( )
( )

( )
( )3

exp / 2 0 exp / 2

0 exp / 2 exp / 2
AA

BB

i i
U

i i

ϕ ϕ ξξ
ξ

ϕ ϕ ξξ
    

= =    −     
, (5.15) 
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so that when 2ϕ π=  this will become 3(2 )U π ξ ξ= −  but when 4ϕ π=  this will become 

3(4 )U π ξ ξ= .  Numerically, this is encoded in the denominator of 2 first appearing in (5.3), due 

to the projective two-to-one, double-covering, homomorphic mapping : (2) (3)SU SOπ → , and 
when the complete Dirac theory is taken into account, likewise to the mapping 

: (2, ) (1,3)SL C SOπ → .  This double covering produces a two-valuedness in the sign of a 
positively-signed electron wavefunction rotated from 0ϕ =  to 2 kϕ π=  depending on whether 
there are an even number of cycles 2,4,6,8...k =  in which case the sign remain positive, or an 
odd number of cycles 1,3,5,7...k =  in which case the sign flips to being negative. 
 
 So what is really happening with the odd-integer times π  phase change of (5.11) and 
with the half integer Dirac charges of (5.13), is that the phase change must compensate for any 
wavefunction version change which might take place as the electron traverses a circuit about the 
magnetic monopole, such that when the electron returns to its original azimuth by going from 

0ϕ =  to 2ϕ π= , there are no observable singularities.  Because a tidally-locked electron 
wavefunction will invert its sign after a 2π  circuit about the monopole, and because we require 
a single-valued wavefunction as between 0ϕ =  and 2ϕ π= , we must compensate this version 
change with a shift in the phase change in order to ensure that there are no observable 
singularities.  Thus, the phase change shifts by half a cycle, from 2 ,4 ,6 ,8 ...π π π π∆Λ =  in (4.11) 

for an electron which does not rotate during its circuit, to ,3 ,5 ,7 ...π π π π∆Λ =  in (5.11) for an 

electron which does rotate in a tidal lock with the monopole.  Then, because the Wu-Yang 
solution ( ) ( )exp exp 2i i egϕΛ =  of (4.4) in turn relates this phase change to the charge strength 

product 2eg , the net consequence is that the electric and magnetic charge strengths now become 

quantized in the half-integer units 3 5 71
2 2 2 22 , , , ...eg =  of (5.13), rather than the whole integer units 

2 1,2,3,4...eg=  of the standard Dirac condition (4.7).  This sort of “phase / version 
synchronization,” wherein the phase must synchronize itself to compensate any wavefunction 
version changes in order to avoid observable singularities, then becomes the foundation of 
fractionalized electric and magnetic Dirac charges.  In essence, this synchronization compensates 
for the two-valuedness of the double cover : (2) (3)SU SOπ →  to ensure that there are no 
observable singularities after any given 2π  cycle, which in turn owes to the fact that SU(2) is a 
simple group while the double-covered SO(3) is not. 
 

The example just shown with half-integer electric and magnetic charge fractions is just 
that: an example.  As stated at the start of this section, this establishes that half-unit magnetic 
charges 2 / 2eg n=  can exist without observable singularities, and this will later provide the 
template for showing in sections 10 and 11 how additional fractional charges may also exist 
without observable singularities.  As we shall now start to demonstrate, this phase / version 
synchronization can be generalized to permit fractionalized Dirac charges without observable 
singularities for any integer denominator 1,2,3,4,5...m = , and not merely for the 1,2m =  
denominators of (5.14), but considerations of helicity and charge continuity will restrict these 
denominators to only odd integers in addition to the even integer 2 already shown above. 
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PART III:  ROOT OF UNITY TRANSFORMATIONS ON SO(2), THEIR 

TOPOLOGICAL MAPPING ONTO SO(3), AND THEIR CORRESPONDENCE TO 

THE HEISENBERG EQUATIONS OF MOTION 
 
6. Euler Angles in the Complex Plane, and Root-of-Unity Generators 

and their Primary Properties 
 
 As we shall now demonstrate, the 2x2 Pauli matrices iσ  of the simple universal covering 

group SU(2) of SO(3) represent a special case of an infinite set of 2x2 generator matrix triplets 
we denote as iτ ; 1,2,3i =  associated with covering groups we denote by (2)Gɶ .  Specifically, in 

the same way that the Pauli matrices are constructed such that 2 2 2
1 2 3 Iσ σ σ= = =  and therefore 

may be thought of as the “square roots” ( )1/2

i iIσ =  of a triplet of 2x2 identity matrices iI , these 

iτ  may be thought of as the generalized mth roots of the identity triplet iI , namely, ( ) /n m

iI  for 

1 n m≤ ≤ , where n and m are integers.  Of course, for n m=  we will recover ( ) /m m

i iI I=  which 

is the identity matrix triplet, and for n m>  we simply recycle ad infinitum through the ( ) /n m

iI  

for which 1 n m≤ ≤ .  If we then utilize the left scripts (2)n
mGɶ  to denote the covering group (2)Gɶ  

associated with any given set of ( ) /n m

iI , and if we likewise denote ( ) /n mn
m i iIτ ≡ , then according 

to these notational conventions the Pauli matrices ( )1/21
2i i iIσ τ= =  and the universal covering 

group 1
2(2) (2)SU G= ɶ . 

 

 The starting point for developing these “root of unity” generators ( ) /n mn
m i iIτ =  emanates 

from pure mathematics, via the Euler relation for the generalized mth roots of unity: 
 

( )

( ) ( ) ( )

/
1 1 exp exp 2 cos 2 sin 2

exp 2 cos 2 sin 2

n n mm n n n
i i i

m m m

i i

ϑ π π π

π π π

     = = = = +     
     

= = +ℚ ℚ ℚ

. (6.1) 

 
Above: 
 

2 2
n

m
ϑ π π= = ℚ  (6.2) 

 
 is the Euler angle in the complex plane and we use /n m=ℚ  to denote a number selected from 
the infinite set of rational numbers, i.e., a quotient /n m.  We shall also find it convenient to 
represent the infinite set of irrational numbers as ℚ . 
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What we now need to do, mathematically, is really very simple:  Whereas (6.1) 

represents the roots of the scalar number 1, the desired ( ) /n n mn m
m i i iI Iτ = =  represent roots of the 

2x2 identity matrix ( ) ( )diag 1,1I = .  So these are just an extension of (6.1) for the number 1, to 

the triplet iI  of 2x2 identity matrices, whereby we require the correspondence ( )1/21
2i i iIσ τ= = .  

Now, let us find ( ) /n n mn m
m i i iI Iτ = = , explicitly. 

 
 Starting with (5.1), it happens that with a judicious choice of these angles iθ  we can 

cause each of these iU  to be identical to the corresponding iσ  up to an overall constant factor.  

Specifically, if we choose each of these angles such that iθ π= , we readily see that: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

1 1 1

2 2 2

3 3

cos / 2 sin / 2 0 1
/ 2 exp

sin / 2 cos / 2 1 02

cos / 2 sin / 2 0 1 0
/ 2 exp

sin / 2 cos / 2 1 0 02

cos / 2 sin / 2 0
/ 2 exp

0 cos / 2 sin /2

i
U i i i

i

i
U i i i

i

i
U i

i

π πππ σ σ
π π

π πππ σ σ
π π

π πππ σ
π π

    = = = =    
    

  −    = = = = =       − −      

+ = =  −  ( ) 3

1 0

2 0 1
i iσ

   
= =   −  

.(6.3) 

 
Consolidating, we see that ( ) ( )/ 2 exp / 2i i iU i iπ σ π σ= =  in general, which we rewrite as: 

 

( ) ( ) ( )exp / 2 cos / 2 sin / 2i i i ii i i iσ σ π σ π σ π = − = − +  . (6.4) 

 
So we can now square this expression, and because 2

i iIσ = , we can write the identity 

matrix triplet iI  as: 

 

( ) ( ) ( ) ( ) ( )2 2
exp cos sini i i iI i i i iσ π σ π σ π = − = − +  . (6.5) 

 

We deliberately do not turn ( )2
i−  into -1, because when we later take square roots of this, we 

want to recover –i alone, and not extraneously introduce a two-valued 1i± = − .  Of course, the 

identity matrix taken to any integer power n is still the identity matrix ( )n

i iI I= , so the most 

general expression for this triplet of identity matrices is:  
 

( ) ( ) ( ) ( ) ( ) ( )2 2
exp cos sin

n n n

i i i i iI I i i n i n i nσ π σ π σ π = = − = − +  . (6.6) 

  
  Now that we have the identity matrices represented in this form, it is an easy matter to 

obtain their generalized mth roots, ( ) /n m

iI .  There are simply: 
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( ) ( ) ( )
2 2

exp cos sin
n n n

n m m m
m i i i i i

n n n
I i i i i

m m m
τ σ π σ π σ π      = = − = − +      

      
. (6.7) 

 

This is the explicit expression for the ( ) /n mn
m i iIτ =  that we sought to obtain. 

 
 It is also helpful to use the Euler formulation ( )exp 3 / 2i i π− =  to write: 

 

( ) ( )2 /
exp 3 /

n m
i i n mπ− = , (6.8) 

  
and then use this in (6.7) to write: 
 

( )exp 3 exp exp 3 exp exp 3n
m i i i i i i

n n n n n
i i i I i i I

m m m m m
τ π σ π π σ π π σ         = = = +         

         
. (6.9) 

 
After the second equal sign we simply introduce the 2x2 identity matrices iI  into ( )exp 3 /i n mπ  

which multiples the 2x2 ( )exp /ii n mσ π .  Because iσ  and iI  are both matrices, we must be 

attentive to their commutation, because the Baker–Campbell–Hausdorff and Zassenhaus 

formulae inform us that ( ) ( )2 3/2 [ , ] /6 (2[ ,[ , ]] [ ,[ , ]])( ) .  ..  
A X Y A Y X Y X X YA X Y AX AYe e e e e

− ++ =  as a general rule 
whenever X and Y are matrices.  Here, however, iI  is the identity matrix, so , 0i jI σ  =  , and 

thus the simple rule ( ) AX AY A X Ye e e +=  for scalar exponents may be applied.  This is what enables 
us to obtain the sum 3i iI σ+  in the final expression. 

 
 As a test, to confirm that (6.7) correctly corresponds to the square roots of iI , we may set 

m=2 in (6.7) to obtain: 
 

( ) ( ) ( ) ( ) ( )2 exp / 2 cos / 2 sin / 2
n nn

i i i ii i n i n i nτ σ π σ π σ π = − = − +  . (6.10) 

 
Referring to (6.6) we see that 2

n
i iIτ =  for 0,2,4,6...n = , which recovers the identity matrices iI  

which trivially represent one set of square roots of the iI  themselves.  And referring to (6.4), we 

see that 12 i iτ σ=  for 1n = , while (6.7) shows that for successive 3,5,7...n =  the sign flip in 

( )n
i−  is precisely offset by a flip in ( )exp / 2ii nσ π , so that 2

n
i iτ σ=  for 1,3,5,7...n =  generally.   

 
 We now make use of the Euler angle 2 / 2n mϑ π π= = ℚ  of (6.2) to reparameterize (6.9) 
in terms of ϑ , and so may write: 
 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

16 
 

( ) ( ) ( )

( ) ( )

3
exp exp exp 3

2 2 2

cos 3 sin 3
2 2

n
n m

i m i i i i i

i i i i

I i i i I

I i I

ϑ ϑ ϑτ ϑ τ σ σ

ϑ ϑσ σ

     = = = = +     
     

   = + + +   
   

. (6.11) 

 

So the roots of unity are ( ) /
1 exp

n m
iϑ=  as in (6.1) while the roots of the 2x2 identity triplet, in 

contrast, are ( ) ( )( )( )/
exp / 2 3

n m

i i iI i Iϑ σ= +  as seen in the above. 

   
The universal cover SU(2) has the generators 1

2i iσ τ=  just discussed following (6.10).  If 

we want an easy way to think about this, we can simply use n=1 and m=2 in (6.2) to find that 
ϑ π= , in other words, that ( )i iσ τ π= .  So in terms of ϑ ,  the SU(2) generators are spotted at 

ϑ π=  in the complex plane, and we immediately know that when we square these generators, 
we will double the angle, and thereby end up with a triplet of identity matrices iI  spotted at 

2ϑ π= .  Then, when thinking about the other root generators, it is easiest to simply think about 
the angle at which those generators are disposed.  The non-trivial cubed-root generators, for 
example, will be at 120 ,240ϑ = ° ° , so that when cubed they will yield either 360 ,720ϑ = ° °  

which in either case are a triplet iI  of identity matrices.  For the fourth root the non-trivial 

generators will be spotted at 90 ,180 ,270ϑ = ° ° °  and when raised to the fourth power will yield 

360 ,720 ,1080ϑ = ° ° °  with a iI  triplet.  The pentuple generators will be at 

72 ,144 ,216 ,288ϑ = ° ° ° °  and when raised to the fifth power will again recover an integer 

multiple of 360°  with iI .  And so on.   

 
Consequently, the Euler angle 2 /n mϑ π=  when used in (6.11) provides a very powerful 

vehicle to cut through all the algebra of these root covering groups, and think about these groups 
and their operations very simply in terms of orientations and rotations of the Euler angle ϑ  on 
the unit circle in the complex plane in which the generators ( )n

m i iτ τ ϑ=  are spotted.  From this 

view, the SU(2) group of iσ  is a universal cover because any other set of generators including 

the unity matrices iI  can be obtained merely by rotating the angle of these generators from 

ϑ π=  to the pertinent rational multiple of 360° , i.e., to any and all 2 / 2n mϑ π π= = ℚ . 
 
When we wish to explicitly calculate ( )iτ ϑ  for a specific 2 /n mϑ π= , the formulation 

( ) ( ) ( )exp 3 / 2 exp / 2i ii iτ ϑ ϑ σ ϑ=  in (6.11) provides the simplest path to do so.  The matrix 

( )exp / 2iiσ ϑ  is easily calculated by replacing each of the iθ  in (5.1) with ϑ .  Then, we simply 

multiply the ( )exp / 2iiσ ϑ  result by ( )exp 3 / 2i ϑ for all of the iτ  to obtain: 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

1 1

2 2

3 3

cos / 2 sin / 23 3
exp exp exp

sin / 2 cos / 22 2 2

cos / 2 sin / 23 3
exp exp exp

sin / 2 cos / 22 2 2

exp 2 03
exp exp

0 exp2 2

i
i i i

i

i i i

i
i i

i

ϑ ϑϑ ϑ ϑτ ϑ σ
ϑ ϑ

ϑ ϑϑ ϑ ϑτ ϑ σ
ϑ ϑ

ϑϑ ϑτ ϑ σ
ϑ

      = =       
      

      = =        −      

   = =   
    


 



. (6.12) 

 
To obtain explicit roots of unity, for simple angles such as 2 / 3 120n nϑ π= = ⋅ °  with m=3 

or 2 / 4 90n nϑ π= = ⋅ °  with m=4 one can draw suitable triangles and obtain the requisite sines 
and cosines in terms of roots of integers.  But as the fractional m in 2 /n mϑ π=  become larger 
integers, it becomes difficult, and in many cases impossible, to draw a regular polygon and then 
start manipulating subset triangles.  The preferred general approach, which can be used for any 
fraction m, is to instead write these roots as 1mx =  i.e., as the polynomial equation 1 0mx − = , 
and then to find each of the m values of x which are roots of this polynomial.  Of course, one of 
these m roots is always 1 itself, so 1 0x− =  can always be factored out.  It is then readily seen 
with this factorization that this polynomial may be rewritten as: 
 

( )( ) ( ) 11 2 3 3 2

0
1 ... 1 1 1 0

mm m m m i

i
x x x x x x x x x x

−− − −
=

− = + + + + + + − = − =∑ . (6.13) 

 
So the m-1 mth roots of unity aside from 1 itself are generally found by solving the polynomial: 
 

1

0
0

m i

i
x

−

=
=∑ . (6.14) 

 
Of course, for large m, this is not a trivial polynomial to solve.  But in principle, this makes it 
possible to find any and all roots that may be desired.  So, for example, for the cubed roots of 
unity, the polynomial (here, quadratic) is 2 1 0x x+ + = , which is readily solved as 

( ) ( )1 1 4 / 2 1 3 / 2x i= − ± − = − ± .  Via (6.1), the real part of whatever roots are obtained gives 

the cos, while the imaginary part gives the sin.  These in turn are readily inserted into (6.12) to 
yield explicit matrices for any specified m. 
  

Now let’s explore the primary properties of these root of unity generators ( )iτ ϑ  in 

(6.12), specifically, trace, Hermicity, unitarity, determinants, and commutators.   
 
We see that in general the traces of (6.12) are: 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

3

Tr Tr 2exp 3 / 2 cos / 2

Tr exp 2 exp

i

i i

τ τ ϑ ϑ
τ ϑ ϑ

= =

= +
. (6.15) 
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As just reviewed, the SU(2) generators ( )i iσ τ π= , and indeed, the above become traceless, i.e., 

equal to zero, if and only if we set ϑ π= , and more generally, ( )2 1nϑ π= −  for integer n. 

 
 Given †

i iσ σ=  and of course †
i iI I= , the Hermitian conjugate obtained from (6.11) is: 

 

( ) ( )† exp 3
2i i ii I
ϑτ ϑ σ = − + 

 
, (6.16) 

 
which shows the iτ  in general are not Hermitian, †

i iτ τ≠ .  More explicitly, from (6.12) we find: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

†
1

†
2

†
3

cos / 2 sin / 23
exp

sin / 2 cos / 22

cos / 2 sin / 23
exp

sin / 2 cos / 22

exp 2 0

0 exp

i
i

i

i

i

i

ϑ ϑϑτ ϑ
ϑ ϑ

ϑ ϑϑτ ϑ
ϑ ϑ

ϑ
τ ϑ

ϑ

 − = −    −  

 − = −    −  

 −
=  
 

. (6.17) 

 
Comparing with (6.12), and given that ( )sin sinθ θ− = − , these will be Hermitian, †

i iτ τ=  for all 

ϑ ϑ= − , that is, if and only if nϑ π=  for integer n.   
 

It is, however, also easily seen from (6.12) and (6.17) that these iτ  are unitary,   

 
†

i i iIτ τ = . (6.18) 

 
Only in the special case ϑ π=  in the first cycle, and for generally ( )2 1nϑ π= − ), are these iτ  

both Hermitian and traceless.  As already seen, ( )i iτ π σ=  are simply the Pauli matrices. 

 
 As to the determinants of (6.12), it is easy to find that for all the iτ : 

 

( ) ( ) ( )( )det exp 3 exp 2 3 /i i i n mτ ϑ ϑ π= = . (6.19) 

 
So for ( )i iσ τ π= , setting ϑ π=  above yields ( ) ( )det exp 3 exp 1i i iτ π π= = = − , as is of course 

also to be expected.  Noting that the unitary rotation matrices (5.1) for which † 1i iU U = , also 

have  det 1iU = , we may also inquire what iτ  have det 1iτ = .  It will be readily seen that 

det 1iτ =  if and only if 2 / 3 120n nϑ π= = ⋅ ° , i.e., / 3n=ℚ , i.e., m=3, which corresponds with 
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the cubed roots of unity.  Specifically, for m=3, the above becomes ( ) ( )det exp 2 1i i nτ ϑ π= = .    

In all cases, however, det iτ  will have a magnitude of 1, that is, ( ) ( )2
det det * det 1i i iτ τ τ= = . 

   
 Next, let us obtain the commutators ,i jτ τ    for any given ( )iτ ϑ .  First, working from 

( ) ( ) ( )exp 3 / 2 exp / 2i ii iτ ϑ ϑ σ ϑ=  in (6.11) we construct: 

 

( ), exp 3 exp ,exp
2 2i j i ji i i
ϑ ϑτ τ ϑ σ σ      =           

. (6.20) 

 
To evaluate this, it helps to also construct the commutators ,i jU U    of the unitary matrices 

(5.1).  This exercise is straightforward and yields: 
 

[ ]

[ ]

1 2 1 2 1 2
1 2 1 2 3

3 32 2
2 3 2 3

1 0
, exp ,exp 2 sin sin 2 sin sin

0 12 2 2 2 2 2

0 1
, exp ,exp 2 sin sin 2 sin

1 02 2 2 2

U U i i i i

U U i i i i

θ θ θ θ θ θσ σ σ

θ θθ θσ σ

             = = − = −              −              

        = = − = −        
         

[ ]

32
1

3 3 31 1 1
3 1 3 1 2

sin
2 2

0
, exp ,exp 2 sin sin 2 sin sin

02 2 2 2 2 2

i
U U i i i i

i

θθ σ

θ θ θθ θ θσ σ σ

  
   
   

−            = = − = −            
             

.(6.21) 

 
If we then set 1 2 3ϑ θ θ θ≡ = =  and also apply the half angle ( ) ( )2sin 1 co/ 2 s / 2ϑ ϑ= − , this 

consolidates to: 
 

( )2, exp ,exp 2 sin cos
2 2 2

1i j i j ijk k ijk kU U i i i i
ϑ ϑ ϑσ σ ε σ εϑ σ        = = − =             

−


. (6.22) 

 
Now, if we multiply through by ( )exp 3i ϑ , we arrive at the desired commutator (6.20): 

 

( ) ( )( ), exp 3 exp ,ex cos 1p exp 3
2 2i j i j ijk ki i i i i
ϑ ϑτ τ ϑ σ σ ϑ εϑ σ      = =       

−
  

. (6.23) 

 
It is then also possible to isolate iσ  with some simple re-indexing and then revert via 

( )21 cos 2sin / 2ϑ ϑ− = .  Doing so, we may obtain: 

 

( ) ( )21
4 exp 3 csc / 2 ,i ijk j ki iσ ϑ ϑ ε τ τ = −   . (6.24) 

 
We see from (6.23) that the ( )iτ ϑ  are not, in general, a closed group under multiplication 

because their commutation reproduces 1
2 ,ijk k i jiε σ σ σ =    scaled by the numerical factor 
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( )( )ce oxp 13 si ϑ ϑ − . For cos 1ϑ =  a.k.a. 2 nϑ π=  we have , 0i jτ τ  =   because in this case 

i iIτ = , while for ( )2 1nϑ π= −  we have 12 ,i j ijk kiτ τ ε σ  =   which, because in this case i iτ σ= , is 

just the group relation 1
2 ,i j ijk kiσ σ ε σ  =   of SU(2).  In this special case, the iτ  group is closed. 

 
7. Spinors Transformed by the Root-of-Unity Generators  
 
 At this point, let us take the unitarity relation †

i i iIτ τ =  of (6.18) and combine that with 

the determinant ( ) ( )det exp 3i iτ ϑ ϑ=  of (6.19) to arrive at a basis for generally considering the 

operation of these iτ  on spinors ξ .  In the derivation to follow, we shall retrace pages 32-34 of 

[6], but using the unitary iτ  with ( )det exp 3i iτ ϑ=  in addition to the unitary iU  with det 1iU = . 

 
First, we keeping in mind that †

i iτ τ≠  except for when nϑ π= , we abstractly represent 

any of the iτ  in (6.12) by: 

 

i

a b

c d
τ  

=  
 

. (7.1) 

 
However, because †i i iIτ τ =  is unitary, we may multiply from the right by 1

iτ −  to rewrite this in 

terms of the matrix inverse as † 1
i iτ τ −= .  Then, using the mathematical formula for the inverse of 

a 2x2 matrix while also using ( )1/ det exp 3i iτ ϑ= −  and also forming †
iτ  directly from (7.1),  

this means that: 
 

( )† 1 * *1
exp 3

* *deti i
i

d b d b a c
i

c a c a b d
τ τ ϑ

τ
− − −     

= = = − =     − −     
. (7.2) 

 
Consequently: 
 

( ) ( )exp 3 *; exp 3 *d i a c i bϑ ϑ= = − , (7.3) 

 
which permits us to write (7.1) in terms of a and b only, as: 
 

( ) ( )exp 3 * exp 3 *i

a ba b

i b i ac d
τ

ϑ ϑ
  

= =    −   
. (7.4) 

 
From this we find that ( ) ( )det * * exp 3i a a b b iτ ϑ= + .  But we also know that ( )det exp 3i iτ ϑ=  

from (6.19), fro which we deduce that 
2 2

1a b+ = , as expected, with 
2

*a a a=  and 
2

*b b b= . 
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 Now, let us posit a spinor ( )1 2,Tξ ξ ξ=  for which each of 1ξ , 2ξ  are complex numbers.  

This of course means that ( )†
1 2*, *ξ ξ ξ= .  Using (7.4) to transform ξ  yields: 

 

 
( ) ( ) ( )( )

1 21 1 1

1 22 2
2

exp 3 * exp 3 * exp 3 * *i

a b a b

i b i a i b a

ξ ξξ ξ ξ
ξ ξ τ ξ

ϑ ϑ ϑ ξ ξξ ξξ

 ′ +      
 ′= → = = = =      − − + ′       

. (7.5) 

 
This contains the two simultaneous equations: 
 

( ) ( )
1 1 1 2

2 2 1 2exp 3 * *

a b

i b a

ξ ξ ξ ξ

ξ ξ ϑ ξ ξ

′→ = +

′→ = − +
. (7.6) 

 
Conjugating each of these and then reordering and restructuring somewhat, including 
multiplying each side of the resulting equations through by ( )exp 3i ϑ  then yields: 

 

( )( ) ( )( )
( ) ( ) ( )( )

2 2 1

1 2 1

exp 3 * * *

exp 3 * exp 3 * * * *

i a b

i i b a

ϑ ξ ξ ξ

ϑ ξ ϑ ξ ξ

′− = − +

′ = − − +
. (7.7) 

 
This may then be cast using the exact same matrix as the one appearing in (7.5), as: 
 

( ) ( ) ( )
2 2

1
1

* *
exp 3

exp 3 * exp 3 * **

a b
i

i b i a

ξ ξ
ϑ

ϑ ϑ ξξ

 ′− −  
  =   − ′    

. (7.8) 

 

This means that the ( )2 1*, *
Tξ ξ−  doublet transforms under root of unity operations by iτ  in the 

exact same manner as does the doublet ( )1 2,
Tξ ξ .  This is a well-known special property of SU(2) 

related to charge conjugation, for transformations under the iU  of (5.1).  We see here that this 

special property is maintained for the iτ  of (6.12). 

 
 Next, we observe that: 
 

( )2 1
2

1 2

* *0 1
* *

* *1 0
i

ξ ξ
σ ξ ζξ

ξ ξ
− −    

= = − =    
    

, (7.9) 

 
Note that 2iζ σ≡ −  is a real matrix, with *ζ ζ=  and Tζ ζ= −  and 2 Iζ = − .  Taking the 

Hermitian conjugate yields: 
 

( ) ( ) ( )†

2 1*
Tζξ ζξ ξ ξ= = − . (7.10) 
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As a result of (7.4) as well as (7.9) written also for *ζξ ′ , we can compact the main 

equalities in (7.5) and (7.8) to read as such: 
 

( )( ) ( )exp 3 * *
i

ii

ξ τ ξ
ϑ ζξ τ ζξ

′ =
′ =

.  (7.11) 

 
The conjugate transpose of the above is then: 
 

( )
( )( ) ( )( ) ( )( ) ( ) ( )

†† † †

†† † † †exp 3 * exp 3 * *

i i

T T

i i ii i

ξ τ ξ ξ τ

ϑ ζξ ϑ ζξ τ ζξ ζξ τ ζξ τ

′ = =

′ ′− = − = = =
. (7.12) 

 

Comparing the rightmost terms in these equations, we see †ξ  and ( )Tζξ  both operated upon, 

from the right, by the same †iτ .  The spinor-prime in the former case is †ξ ′  and in the latter, 

from the second term in the second equation, it is ( )( )exp 3
T

i ϑ ζξ ′− .  This means that †ξ ′  

transforms in the same manner as does ( )( )exp 3
T

i ϑ ζξ ′− , which we write as 

( )( )† ~ exp 3
T

iξ ϑ ζξ′ ′− .  Then, we simply rename this to the unprimed ( )( )† ~ exp 3
T

iξ ϑ ζξ−  via 

the inverse transformation ξ ξ′ → .  Finally, combining this with (7.10) as well as with the 

explicit expression ( )†
1 2* *ξ ξ ξ= , we may finally write the end result: 

 

( ) ( )( ) ( )( )†
1 2 2 1* * ~ exp 3 exp 3

T
i iξ ξ ξ ϑ ζξ ϑ ξ ξ= − = − − . (7.13) 

 

In the circumstance where ( )det exp 3 1iτ ϑ= =  this reduces to ( )† ~
Tξ ζξ which will be 

recognized as a known SU(2) transformation property, see, e.g., equation [2.45] in [6]. 
 

Now we are may begin to examine the effects of these root of unity transformations via 
the unitary root of unity operators iτ  on the physical space of spacetime, how these give rise to 

fractionalized Dirac magnetic monopoles, and how these relate to populating a system with 
multiple fermions in accordance with the fermion Exclusion Principle, using fermion states with 
multivalued exclusionary quantum numbers. 
 
8. Mapping Root-of-Unity SU(2) Spinor Transformations onto the 

Physical Space of SO(3) 
 

To examine how the transformations (7.5) act on the observed, three-dimensional 
physical space of SO(3), let us first multiply the result (7.13) from the right by ξ  to specify the 

transformation relationship between the outer product matrices †ξ ξ  and ( )Tζξ ξ , while also 

showing each matrix explicitly, as such: 
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( )

( ) ( ) ( ) ( ) ( )

2

1 1 21†
1 2 2

2 2 1 2

2
1 1 2 1

2 1 2
2 2 1 2

*
* *

*

~ exp 3 exp 3 exp 3
T

i i i

ξ ξ ξξ
ξξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξϑ ξ ζξ ϑ ξ ξ ϑ
ξ ξ ξ ξ

  
 = =      

 − 
− = − − = −    −   

. (8.1) 

 
Simultaneously, let us introduce the physical space coordinates ( ), ,ix x y z=  of SO(3) and 

contact these with the spin matrices iσ  to form the very-recognizable matrix: 

 

k
k

z x iy
x

x iy z
σ

− 
=  + − 

. (8.2) 

 

This is of course traceless ( )Tr 0k
k xσ =  and Hermitian ( )†k k

k kx xσ σ=  because its kσ  

generators are those of SU(2) for which Tr 0kσ =  and †
k kσ σ= .  Also, the invariant square 

radial length of the rotation group SO(3) is ( ) 2 2 2 2det k
k x x y z rσ− = + + = . 

 
 Ordinarily, when we use the rotation generators (5.1) with det 1iU = , the analogous 

result for (8.1) is ( )† ~
Tξξ ξ ζξ .  This is because ( )1/ det exp 3i iτ ϑ= −  is removed in favor of 

1/ det 1iU = .  Then, one sets ( )T k
k xξ ζξ σ− =  (note sign flip) to establish the connection 

between the spinors ξ  and the space coordinates ix , which, for example, is implied by equations 

[2.47], [2.49] and [2.53] in [6].  So the overall relationship for the iU of (5.1) is 

( )† ~
T k

k xξξ ξ ζξ σ− − = .  What is different about (8.1) is the new term ( )1/ det exp 3i iτ ϑ= − .  

Because 
2

det 1iτ = , this extra terms does not alter the magnitude of anything in (8.1).  But it 

does alter the direction of the unit vector in the complex plane.  So let us inquire about what 
specific effects this term produces on SO(3). 
 
 The matrix †ξξ  on the top line of (8.1) is naturally Hermitian, which is to say that the 

upper right and lower left matrix entries 1 2 *ξ ξ  and 2 1*ξ ξ  are naturally, inherently conjugate to 

one another, or precisely put, ( )1 2 2 1* * *ξ ξ ξ ξ= , by identity.  At the same time, the matrix 

( )Tξ ζξ  on the bottom line of (8.1) is inherently traceless, ( )( ) ( )1 2 1 2Tr 0
Tξ ζξ ξ ξ ξ ξ= − + = , thus 

so too is ( ) ( )exp 3
T

i ϑ ξ ζξ− , by identity.  At the same time, however, there is nothing in †ξξ  to 

make this identically traceless, nor anything in ( )Tξ ζξ  or ( ) ( )exp 3
T

i ϑ ξ ζξ−  to make these 

identically Hermitian.  Rather, it is the fact that †ξξ and ( ) ( )exp 3
T

i ϑ ξ ζξ−  transform in the 

same way under SU(2) which requires these each to be both Hermitian and traceless.  Thus, the 
Hermicity of †ξξ  forces the condition ( ) ( )( )2 2

2 1exp 3 exp 3 *i iϑ ξ ϑ ξ− − = −  a.k.a. 
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( )( )2 2
2 1exp 6 *iξ ϑ ξ= −  onto ( ) ( )exp 3

T
i ϑ ξ ζξ−  in the bottom line, while the zero trace of 

( ) ( )exp 3
T

i ϑ ξ ζξ−  forces the condition 
2 2

1 2 0ξ ξ+ =  onto †ξξ  in the top line. 

 

 Consequently, with these conditions that come about because ( ) ( )† ~ exp 3
T

iξξ ϑ ξ ζξ− , 

we now equate ( ) ( )exp 3
T

i ϑ ξ ζξ− −  (again, sign flip) to k
k xσ  in (8.2) which is both Hermitian 

and traceless, and thereby combine both (8.1) and (8.2) into: 
 

( ) ( ) ( )
2

1 1 1 2† 1 2 1
2

2 1 2 2 2 1 2

* *
~ exp 3 exp 3

* *
T

k
k

i i

z x iy
x

x iy z

ξ ξ ξ ξ ξ ξ ξξξ ϑ ξ ζξ ϑ
ξ ξ ξ ξ ξ ξ ξ

σ

− −  − 
− = − − = −   − − −   

− 
= =  + − 

. (8.3) 

  
Immediately, (8.3) enables us to deduce the following relationships: 
 

( ) ( ) ( )2 2
2 1 1 2exp 3 ; exp 3 ; exp 3x iy i x iy i z iϑ ξ ϑ ξ ϑ ξ ξ+ = − − = − − = − , (8.4) 

 
from which it further follows that: 
 

( )( ) ( )( )2 2 2 21 1
2 1 2 12 2exp 3 ; exp 3ix i y iϑ ξ ξ ϑ ξ ξ= − − = − + . (8.5) 

 
For 0ϑ =  (8.3) to (8.5) reproduce the usual relations given in [2.40], [2.47] and [2.53] of [6]. 
 
 Now let us calculate how transformations under the root of unity matrices ( )iτ ϑ  of 

(6.12) act upon the space coordinates (8.4), (8.5).  The transformations upon the spinor 
components ( )1 2,Tξ ξ ξ=  are given by (7.6).  If we square each of these and also take their 

product we obtain:   
 

( )( )
( ) ( )( )

2 2 2 2 2 2
1 1 1 2 1 2

2 2 2 2 2 2
2 2 1 2 1 2

2 22 2
1 2 1 1 2 2

2

exp 6 * * 2 * *

exp 3 * *

a b ab

i b a a b

i ab a b a b

ξ ξ ξ ξ ξ ξ

ξ ξ ϑ ξ ξ ξ ξ

ξ ξ ϑ ξ ξ ξ ξ

′→ = + +

′→ = + −

′ ′ = − + − +

. (8.6) 

 
Then we substitute from (8.4) and (8.5) into (8.6) to first obtain: 
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( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )

2 2 2 21 1
2 1 2 12 2

2 2 2 2 2 2 2 21 1
1 2 1 2 1 2 1 22 2

2 2 2 21 1
2 1 2 22 2

2 2 2 2 2 2 2 21 1
1 2 1 2 1 22 2

exp 3 exp 3

exp 3 * * 2 * * exp 3 2

exp 3 exp 3

exp 3 * * 2 * * exp 3 2

i i

i i

x i x i

i b a a b i a b ab

y i y i

i b a a b i a b

ϑ ξ ξ ϑ ξ ξ

ϑ ξ ξ ξ ξ ϑ ξ ξ ξ ξ

ϑ ξ ξ ϑ ξ ξ

ϑ ξ ξ ξ ξ ϑ ξ ξ

′ ′′= − − → = − −

= + − − − + +

′ ′′= − + → = − +

= + − + − + +( )
( ) ( ) ( )

1 2

2 22 2
1 2 1 2 1 2 1 2exp 3 exp 3 * *

ab

z i z i ab a b a b

ξ ξ

ϑ ξ ξ ϑ ξ ξ ξ ξ ξ ξ′ ′′= − → = − = − + + −

. (8.7) 

 
Then we further substitute the spinors from (8.4) into the above, then reduce, to obtain: 
 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )
( ) ( ) ( ) ( )( )

2 2 2 21 1
2 2

2 2 2 21 1
2 2

2 2 2 21 1
2 2

2 2 2 21 1
2 2

2 2

exp 6 * * * * * *

exp 6 * * * * * *

exp 3 * * * *

x x i a b x a b iy a b z

a b x a b iy abz

y y i a b ix a b y a b iz

i a b x a b y iabz

z z i a b ab x a b ab iy a b z

ϑ

ϑ

ϑ

′→ = − + + −

+ − − + −

′→ = − − + + +

+ − + + −

′→ = + + − + −

. (8.8) 

 
 The above of course is still an abstracted expression based on (7.4) for any of the iτ  in 

(6.12). But it is even more general than that; for example, it can also be applied to the rotation 
matrices (5.1).  While the unitary matrices are †

i i iIτ τ =  per (6.18) with ( ) ( )det exp 3i iτ ϑ ϑ=  per 

(6.19), the rotation matrices (5.1) have †i i iU U I=  and det 1iU = .  So, to apply these to the iU  of 

(5.1), one would set all of the exponentials in (8.8) to 1, yielding [2.54] of [6]: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2 2 21 1
2 2

2 2 2 2 2 2 2 21 1
2 2

2 2

* * * * * *

* * * * * *

* * * *

x x a a b b x a a b b iy ab a b z

y y a a b b ix a a b b y ab a b iz

z z a b ab x a b ab iy a b z

′→ = + − − − − + − − +

′→ = − − + + + + + − −

′→ = + + − + −

. (8.9) 

 
This would also apply to iτ  any time ( )det exp 3 1i iτ ϑ= =  i.e., for 2 / 3ϑ π=  and the successive 

( )2 3 2 / 3nϑ π= −  which differ from this by an integer multiple of 2π .  Then we obtain a and b 

from (5.1) and plug those into (8.8).  Doing exactly that using 1U  from (5.1), reducing using the 

double-angle formulae 2 2cos 2 cos sinθ θ θ= −  and sin 2 2sin cosθ θ θ= , then putting the results 
into the form of rotation matrices kR , we obtain the x-axis rotation: 
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1 1 1

1 1

1 0 0

0 cos sin

0 sin cos

i i

x x x

x y y y R x

z z z

θ θ
θ θ

′      
      ′= → = =      
      ′ −      

. (8.10) 

 
Using 2U  in like manner yields the y-axis rotation: 

 

2 2

2

2 2

cos 0 sin

0 1 0

sin 0 cos

i i

x x x

x y y y R x

z z z

θ θ

θ θ

′ −      
      ′= → = =      
      ′      

. (8.11) 

 
From 3U , we likewise find the z-axis rotation: 

 

3 3

3 3 3

cos sin 0

sin cos 0

0 0 1

i i

x x x

x y y y R x

z z z

θ θ
θ θ

′      
      ′= → = − =      
      ′      

. (8.12) 

 
Comparing the half-angles iθ  in (5.1) with the whole angles iθ  in (8.10) through (8.12), 

this demonstrates how it is that a rotation through / 2iθ  on SU(2) projects onto a rotation of 

twice the magnitude, iθ  on SO(3).  This is often summarized by the projective mapping 

: (2) (3)SU SOπ → .  As reviewed in section 5, this is why an electron wavefunction is not 
restored to its original “version” after a 2π  rotation on SU(2), but requires a 4π  circuit to return 
to version, as is known.  This in turn is why for a tidally-locked electron, the phase change goes 
half a revolution off cycle ( )2 1nπΛ = −  as in (5.11) and therefore requires the half integer Dirac 

charges 1
22eg n= −  of (5.13) in order to avoid observable singularities.  This does not appear to 

have been previously pointed out in the monopole literature. 
 
 The above, (8.10) through (8.12) provide a check on the correctness of (8.8).  But they 
also demonstrate explicitly why it is that the 2x2 iU  matrices in (5.1) formed from the SU(2) 

generators iσ  are said to be the generators of rotations kR  on O(3) which preserve as an 

invariant, the radial length ( ) 2 2 2 2det k
k x x y z rσ− = + + =  in (8.2).  Specifically, because kR  are 

real matrices and ix  contains real space coordinates, † T
k kR R=  and †i iTx x= .  Further, it is easily 

seen that (3)
T

k kR R I=  for each kR , where (3)I  is the 3x3 identity matrix, which is to say that 

these kR  rotations are unitary.  As a result, using ( ), ,
Tix x y z=  and ( ), ,iTx x y z=  with an 

explicit transpose that is often left implicit, and summing over the space index i via iΣ , the 

invariance of the length 2 2 2 2r x y z= + +  may be written as: 
 

2 2 2iT i iT i iT T i iT i
i i i k k ir x x x x r x R R x x x r′ ′ ′= Σ → Σ = = Σ = Σ = , (8.13) 
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that is, 2 2 2r r r′→ = .   
 
 To develop an algebraic matrix-free formulation of (8.13), we may use the Minkowski 
metric tensor ( ) ( )diag 1, 1, 1, 1µνη = − − −  for which the inverse σν ν

µσ µη η δ=  to define the 

covariant (lower-indexed) j
i ijx xη≡  in the usual manner, and generally to raise and lower 

indexes.  Then, representing each of the R in (8.10) to (8.12) as ijR  with matrix indexes which 

are the space indexes , 1, 2,3i j =  such that ik i
kj jR R δ=  (with the transpose of kjR  represented by 

the reverse indexing of ikR ), we may rewrite (8.13) algebraically, free of any explicit showing of 
transposes T or sums iΣ  or matrix multiplications, as:  

 
2 2 2i i ik j i j i

i i i kj i j ir x x x x r x R R x x x x x rδ′ ′ ′− = → = − = = = = − . (8.14) 

 
 Let us now apply the abstracted result (8.8) to each of the root of unity generators ( )iτ ϑ  

obtained in (6.12), then form the results into three matrices designated kΡ  with the uppercase 

Greek letter Rho for “root” of unity.  Applied to the root of unity generator ( )1τ ϑ , (8.8) yields: 

 

( ) 1

1 0 0

exp 3 0 cos sin

0 sin cos

i

x x x

y y i y x

z z z

ϑ ϑ ϑ
ϑ ϑ

′      
      ′→ = ≡ Ρ      
      ′ −      

. (8.15) 

 
Likewise for ( )2τ ϑ  we obtain: 

 

( ) 2

cos 0 sin

exp 3 0 1 0

sin 0 cos

i

x x x

y y i y x

z z z

ϑ ϑ
ϑ

ϑ ϑ

′ −      
      ′→ = ≡ Ρ      
      ′      

, (8.16) 

 
while for ( )3τ ϑ  the transformation is: 

 

( ) 3

cos sin 0

exp 3 sin cos 0

0 0 1

i

x x x

y y i y x

z z z

ϑ ϑ
ϑ ϑ ϑ

′      
      ′→ = − ≡ Ρ      
      ′      

. (8.17) 

 
To obtain (8.15) to (8.17) one first calculates the various a and b-based coefficients of x, y, z in 
(8.8), then reduces including using the double-angle formulae ( ) ( ) ( )2 2cos cos / 2 sin / 2ϑ ϑ ϑ= −  

and ( ) ( ) ( )sin 2sin / 2 cos / 2ϑ ϑ ϑ= .  This shows the effects on the physical space SO(3), of the 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

28 
 

transformation iξ ξ τ ξ′→ =  of (7.5), using the explicit iτ  of (6.12).  It is easily seen that 
†

(3)k k IΡ Ρ = , thus each kΡ  is unitary. 

 
 Comparing (8.10) through (8.12) with (8.15) through (8.17), it will be seen that the root 
of unity Euler angle 2 /n mϑ π=  transforms the space coordinates in exactly the same way as do 
the rotation angles iθ , with the sole exception of the factor ( ) ( )exp 3 det ii ϑ τ ϑ=  (see (6.19)) 

which is an overall coefficient for each of the matrices in (8.15) through (8.17).  So there are 
really two transformations embedded in (8.15) through (8.17): an ordinary rotation-like 
transformation based on ϑ  in lieu of iθ , and a transformation resulting from 

( ) ( ) ( )exp 3 cos 3 sin 3i iϑ ϑ ϑ= +  which is a complex number of magnitude ( ) 2
exp 3 1i ϑ =  that 

acts equally on all three space coordinates but introduces a complex number in the Euler plane.  
Consequently, we may segregate the 3x3 matrices themselves which have the effect of a rotation, 
from ( )exp 3i ϑ , and examine the separate operation of ( )exp 3i ϑ  on each of the space 

coordinates ix .  For all of (8.15) through (8.17), this effect is:  
 

( ) ( ) ( ) ( ) ( )exp 3 cos 3 sin 3 cos 3 sin 3i i i i i

x ix

x x i x x i x y iy

z iz

ϑ ϑ ϑ ϑ ϑ
   
   ′→ = = + = +   
   
   

. (8.18) 

 

In the final expression above, we associate the imaginary 1i = −  with the coordinates rather 
than the sin function from which it originates.  So the 3x3 matrices in (8.15) through (8.17) 
perform the usual type of rotations among x, y, z.  But in addition – and what does not happen in 
the ordinary rotations of (8.10) to (8.12) –  they also simultaneously rotate into and among what 
are seen to be imaginary space coordinates ix, iy, iz. 
 
  This means that in general, the space coordinates ix  are not always real, but can become 
complex depending upon the particular 2 /n mϑ π=  used in any given circumstance.  Further, 
because they all contain the complex number ( )exp 3i ϑ  of magnitude 1, each of the kΡ  in (8.15) 

through (8.17) contains complex elements.  As a consequence of all of this, the invariant length 
element must now be defined using the Hermitian conjugate relation: 
 

2 † † 2 † † † 2i i i i i i i i
i i i k k ir x x x x r x x x x r′ ′ ′= Σ → Σ = = Σ Ρ Ρ = Σ = , (8.19) 

 
which also uses unitary relation†

(3)k k IΡ Ρ = .  In (8.13) we have † T
k kR R=  and †i iTx x=  because 

*k kR R=  and *i ix x= , but in (8.19) we have † T
k kΡ ≠ Ρ  and †i iTx x≠  in general because 

*k kΡ ≠ Ρ  and *i ix x≠  in general.  Thus, (8.19) is exactly the same as (8.13), with the exception 

that the T operation is replaced by the †  operation throughout.  
 
 The one change required to represent (8.19) algebraically in the form of (8.14) without 
any explicit showing of conjugate transposes †  or sums iΣ  or matrix multiplications, is for the 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

29 
 

lower-indexed space coordinates ix  to be defined as *j
i ijx xη≡ , so as to include the conjugation 

of x, y, z coordinates which may become complex as seen from (8.18).  Likewise, because the kΡ  

in (8.15) through (8.17) which we now index contravariantly as lmP  are also complex, we define 
the lower indexed *lm

kj kl jmPη ηΡ ≡  so as to also include conjugation.  As a result, the unitary 

relation †
(3)k k IΡ Ρ =  becomes written as ik i

kj jδΡ Ρ =  using the algebraic, matrix-independent 

notation.  Consequently, we may rewrite (8.19) algebraically as: 
 

2 2 2i i ik i i j i
i i i kj i j ir x x x x r x x x x x x rδ′ ′ ′− = → = = Ρ Ρ = = = − . (8.20) 

 
 Having developed the indexed tensor notations tensor needed to summarize the complex 
space coordinates (8.18), we now come to a very important question: what does it actually mean, 
physically, to have space coordinates ix  which start out as real, but may then be transformed by 
a unitary factor ( ) ( )exp 3 exp 6 /i i n mϑ π=  (see (6.2)) into complex coordinates? 

  
9. How Root of Unity Transformations on SO(3) Correspond to the 

Unitary Time Evolution of Quantum Heisenberg Matrix Operators  
 

We found in the last section that when a spinor is multiplied by a root of the 2x2 identity 
matrix as in (7.5) and this is projected onto SO(3), the Euler angle for these roots 2 /n mϑ π=  
not only rotates the x, y, z coordinates through an angle ϑ , but also transforms each coordinate 
equally by ( )exp 3i i ix x i xϑ′→ = , as is seen in (8.15) to (8.18).  The invariant 2r  of SO(3) is 

still preserved as seen in (8.20), but the space coordinates on SO(3) become imaginary.  Because 
SO(3) is the physical space of direct material observation, it behooves us to find out what this 
might mean physically. 

 
Of course imaginary space coordinates, or at least an imaginary  y coordinate, do appear 

any time we write this invariant length as ( ) 2 2 2 2det k
k x x y z rσ− = + + = , see, e.g., the 

coordinate iy  appearing in (8.2).  But this imaginary coordinate appears on SU(2), and by the 
time a projection : (2) (3)SU SOπ →  is made onto SO(3) these imaginary coordinates terms 
have cancelled out via the * 1i i =  multiplications which are endemic to multiplication operations 
involving the Pauli matrices kσ .  For example, these no longer appear in (8.10) to (8.12) which 

describe rotations on SO(3).  So the iy  of SU(2) is not pertinent to understanding the meaning of 
the imaginary space coordinates in (8.18) and we discard this line of approach. 

 
One might seek precedent for imaginary space coordinates found in Minkowski’s original 

work [7] in which by treating time as an imaginary space coordinate, it became possible to 
understand a Lorentz transformation as one which preserves the invariant interval 2 2t r− .  So 
one might think to define i iix ct≡  in (8.18) whereby the imaginary space coordinates are 
interpreted as real time coordinates.  However, beyond all the reasons given when Misner, 
Thorne and Wheeler famously bade “farewell to ict” at page 51 of [4], there are several further 
problems with this.  The most important problem is that the operation shown in (8.18) mixes 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

30 
 

space in time in a Euclidean rotation rather than the type of hyperbolic mixing of Lorentz 
transformations, see (5.2).  So even if one entertains the thought that perhaps this is some 
previously-unknown space and time transformation, the implication of these Euclidean 
transformations leads to consequences which simply are not observed.  Specifically, when fully 
developed, these transformations would have the form ( ) ( )cos 3 sin 3t t rϑ ϑ′ = +  and 

( ) ( )cos 3 sin 3r r tϑ ϑ′ = − , again, with 2 /n mϑ π= .  Now, it is well known that all atomic radii 

are within an order of magnitude of the Bohr radius 0 e/a m cα= ℏ .  And it is also well known 

that for the worldlines of non-relativistic or even mildly-relativistic material bodies such as 
electrons with / ~ 1/137.036...v c α = , the spatial length r traversed over a given time t is 
exceedingly less than the time elapsed as represented by the ratio / 1r ct ≪ .  So these Euclidean 
transformations – if they were physically real – would result in atomic radii that are orders of 
magnitude larger than the Bohr radius owing to the fact that ct r≫  along the worldliness of 
material bodies such as electrons, whereby even a small component of t being converted into r 
via a Euclidean rotation would greatly increase the atomic radii in a manner that has no observed 
support.  Consequently, we discard i iix ct≡  as a viable interpretation of these imaginary space 
coordinates. 

 
This now brings us to Heisenberg matrix mechanics.  Not only is this another place in 

physics where imaginary space coordinates can appear, but the appearance of the imaginary 
space coordinates ix  in (8.18) precisely parallels the form in which the Heisenberg matrices iX  
evolve over time in the classical limit elucidated by Ehrenfest.  Specifically, let us promote the 

ix  to the Heisenberg position matrices ( )†1
2

i i iX A A= +  which commute with the momentum 

matrices ( )†1
2

i i iP i A A= −  according to the canonical commutation relation ( ),i j ijX P Iδ ∞  =  ℏ  

where †iA  and iA  are the creation and annihilation matrices and ( )I ∞  is an infinity x infinity 

square identity matrix, which relation of course leads to the uncertainty principle in a well-
known fashion.  With this promotion, we focus on a given coordinate matrix, say, X, which we 
write as with the matrix indexes abX , where , 1, 2,3...a b= ∞ = ℤ  are integers.  Then, also using 

(6.2) which gives discrete values 2 / 2n mϑ π π= = ℚ  to ϑ , we may write (8.18) as: 
 

( ) ( )exp 3 exp 6 /ab ab ab abX X i X i n m Xϑ π′→ = = . (9.1) 

 
Independently of (9.1), both X and P are constructed from Fourier coefficients of real 

quantities, and so their time evolution, see the helpful article at [8], is given by:  
 

( ) ( ) ( )( ) ( )exp 2 0/0ab ab a b abX X i E E t h Xt π→ = − , (9.2) 

 

( ) ( ) ( )( ) ( )exp 2 0/0ab ab a b abP P i E E t h Pt π→ = − . (9.3) 

 
The above (9.2) in which ( )0abX  evolves over time as a Fourier component was in fact the 

original form of the Heisenberg equation of motion.  The correspondence principle as denoted by 
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“ ≅ ” likewise informs us that the classical frequencies 1/f t=  based on the classical period t are 
given by Planck’s law: 
 

a b

a b n
E E h h nhf

t t

−− ≅ = =  (9.4) 

 
with the definition n a b≡ − , for radiation emissions as between classical orbits a and b.  This 
correspondence holds for ,n a b a b= − ≪ , that is, for a system which is emitting or absorbing an 

energy a bE E−  which is only a small portion of its total energy, because the period a bt t≅  can 

then be regarded as approximately equal for either the classical a or b “orbits.”  Conversely, for 
~ ,n a b a b= − , the frequencies are no longer integer multiples of any single frequency because 

a bt t≅  and the difference in period can no longer be neglected.  This is what requires the position 

and momentum operators to be specified by the Heisenberg matrices abX  and abP  which 

reproduce the Fourier coefficients in the classical limit.  By Ehrenfest, the expected values X  

and P  also satisfy the classical equations of motion.  So, is we now substitute (9.4) into (9.2) 

in the classical ,a b a b− ≪  limit of a bt t≅ , we obtain: 

 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )0 0exp 2 / exp 2 exp 20 0ab ab a b ab ab abX X i E E t h X i a b X i n Xt π π π→ ≅ == − − .(9.5) 

 
At the same time, the ordinary Dirac Quantization Condition 2eg n=  obtained in (4.7) is 

implicitly for the root of unity m=1; the whole point of this paper is to show that there are 
physically-admissible roots other than m=1 as we already did for m=2 in (5.14), and as we shall 
show in the next section for other m as well.  So, working with the m=1 trivial root of unity 
which characterizes the standard DQC 2eg n= , (9.1) specializes with the conventional m=1 to: 
 

( ) ( ) ( ) ( ) ( )exp 3 exp 6 exp 2 exp 2 exp 2ab ab ab ab abX X i X i n X i n i n i n Xϑ π π π π′→ = = = . (9.6) 

 
Comparing, we see that (9.5) and (9.6) have the same form, whereby abX  is operated 

upon by ( )exp 2i nπ .  The only difference is that in (9.6) this operation happens three times in 

succession because of ( )exp 6i nπ , which in turn emanates from the factor of 3 in 

( ) ( )det exp 3i iτ ϑ ϑ=  of (6.19) which originated in the ( )exp 3 / 2i ϑ  of (6.11) and later 

progressed to (8.15) through (8.17).  So if we now associate abX  in (9.6) with ( )0abX  in (9.5) 

by defining ( )0aab bX X≡ , and if we regard abX ′  in (9.6) to be the same as ( )abX t  in (9.5) in the 

classical limit such that ( )ababX tX′ ≅ , then (9.5) and (9.6) can be combined to find that: 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

exp 3 0 exp 2 exp 2 exp 2 0

exp 2 exp 2 exp 2 2 3

ab ab ab ab

ab ab ab

X XX X i i n i n i n

i n i n t i n tXtX X

ϑ π π π
π π π

′→ = =

≅ ≅ ≅
. (9.7) 
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That is, for m=1 which corresponds to the conventional DQC 2eg n= , we find that 

( ) ( ) ( )exp 3 0 3ab aab bX i X tXϑ′ = ≅ .  So now the factor of 3 in ( ) ( )det exp 3i iτ ϑ ϑ=  at (6.19) has 

now migrated into a factor of 3 in the time evolution, which is to say, the elapsed time has 
become multiplied by this same factor of 3. 
 
 So with (9.7) being the specialization to the m=1 trivial root of unity, let us now consider 
(9.1) generally for all roots of unity m.  By the very same analysis that brought us to (9.7), the 
more general result of which (9.7) is the m=1 specialization, is: 
 

( ) ( ) ( ) ( ) ( )exp 3 0 exp 6 / 0 3 /aab b aa b abbX X i iX X Xn m t mϑ π′→ = = ≅ . (9.8) 

 
Then, let us scale 3 /t t m→  in (9.2), so that (9.2) becomes: 
 

( ) ( ) ( )( ) ( )0 3 exp 6 // 0ab ab a b abX X i E E t h Xt m mπ= −→ . (9.9) 

 
Now it is possible to combine with (9.8) with (9.9), being attentive to where to place the ≅  sign 
which designates classical correspondence and where to place equal signs denoting exact 
equalities.  The result is: 
 

( ) ( )( ) ( )
( ) ( ) ( ) ( )

3 / 0exp

exp 3 0 exp 6 /

6

0

/ab a b ab

ab a

b

ab b

aX t m

X i

X i E E t hm X

X Xi n mϑ

π

π

→

′≅ = =

= −
. (9.10) 

 
So the upshot is that abX ′  in (9.1) corresponds with the time-evolved ( )3 /abX t m  in the classical 

limit, that is, ( )3 /abab mXX t′ ≅  in the classical limit.  The exact quantum relationship is the one 

on the top line, as  expressed in terms of energies. 
 

We now return to (8.15) through (8.17) and promote all coordinates , ,x y z to Heisenberg 

position operator matrices , ,X Y Z.  Using ( ) ( ) ( )exp 3 0 3 /X Xi t mϑ ≅  from (9.8) and (9.10), we 

may then write the effect of these root of unity transformations on SO(3) as: 
 

( )
( )
( )

( )
( )
( )
( )

( )
( )
( )

1

0 1 0 0 0 1 0 0 3 /

0 0 cos sin exp 3 0 0 cos sin 3 /

0 0 sin cos 0 0 sin cos 3 /

X X X X t m

Y Y X i Y Y t m

Z Z Z Z t m

ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

′          
          ′→ = Ρ = ≅          

          ′ − −          

,(9.11) 

 

( )
( )
( )

( )
( )
( )
( )

( )
( )
( )

2

0 cos 0 sin 0 cos 0 sin 3 /

0 0 1 0 exp 3 0 0 1 0 3 /

0 sin 0 cos 0 sin 0 cos 3 /

X X X X t m

Y Y X i Y Y t m

Z Z Z Z t m

ϑ ϑ ϑ ϑ
ϑ

ϑ ϑ ϑ ϑ

′     − −     
          ′→ = Ρ = ≅          

          ′          

,(9.12) 
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( )
( )
( )

( )
( )
( )
( )

( )
( )
( )

3

0 cos sin 0 0 cos sin 0 3 /

0 sin cos 0 exp 3 0 sin cos 0 3 /

0 0 0 1 0 0 0 1 3 /

X X X X t m

Y Y X i Y Y t m

Z Z Z Z t m

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ

′          
          ′→ = Ρ = − ≅ −          

          ′          

.(9.13) 

 
So the root of unity angle 2 /n mϑ π=  generates a rotation of the matrices X, Y, Z through an 
angle ϑ  in the real, physical space of SO(3).  But simultaneously, in the classical 
correspondence, this root of unity angle also generates a time evolution from 0 to 3 /t m.  And it 
does so precisely because 2 / 2n mϑ π π= = ℚ  is equal to 2π  times a rational number, which 

means that the allowed values of  ϑ  excludes 2π  times any irrational numbers ℚ , 2ϑ π≠ ℚ . 
 
 Now, let us take the exact quantum relation in the top line of (9.10) and set / 2 1h π= =ℏ  
into natural units.  With ( ) ( )3 / 3 /d t m m dt=  and holding ( )0 0abdX = , let us then take the 

derivative of each side of (9.10) to obtain: 
 

( ) ( ) ( )3 /
3

3
/ab

a b ab

dX
i E E X

dt m

t m
t m= − . (9.14) 

 
Once we introduce a state vector ψ  with components aψ  and likewise 1,2,3...a = ∞ , such that 

any operator O has the expected value 
,

*a ab ba b
O O Oψ ψ ψ ψ= =∑ , then it becomes 

possible to rotate matrices into any basis.  So by diagonalizing the Hamiltonian H such that each 
entry on the diagonal is its own energy eigenvalue, that is, H Eψ ψ= , (9.14) may be written: 

 
( ) ( ) ( )( ) ( )3 3

,
3 /

3 / 3 / 3 /
t m

t m X t
dX

i HX i H X
dt

H t m
m

m
m

 − = 
= 

. (9.15) 

 
This is a matrix equation that may hold in any basis.  We may then reverse the scaling 3 /t t m→  
that was used at (9.9), that is, we may now set 3 /t m t→  and 3 / 1m→ .  And we may then write 

( )X t  simply as X.  Now the above becomes: 

 

[ ],
dX

i H X
dt

= . (9.16) 

 
This is modern form of Heisenberg’s equation of motion for (0)X  with no intrinsic time 
dependence, that is, with the partial derivative (0) / 0X t∂ ∂ = .  We see that in this light, m merely 
serves to scale the elapsed time, and it is noteworthy that for the special case of m=3 (9.14) 
reduces to ( ) ( ) ( )/ab a b abdX it dt E E X t= −  and (9.15) reduces to [ ]/ ,dX dt i H X=  in (9.16) in 

their usual forms without any rescaling of the time coordinate.  For other m, the equation of 
motion still takes on the same form; one simply has dilated or contracted time intervals. 
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So, if we establish 3t for m=1 which corresponds to the conventional DQC 2eg n=  as a 

“baseline” time 1 1 3mt t t= ≡ ≡  against which to measure time evolution, then we will have 

13 / /mt t m t m= =  generally.  Thus, for the mth root of unity the time interval is contracted, i.e., 

shortened by a factor of m.  Then, in circumstances where (9.4) applies because ,n a b a b= − ≪  

and so the t appearing in (9.14) may be regarded as a classical period with a bt t≅  as between any 

two classical orbits, the frequency will vary as 1 11/ /m mf t m t hf= = = , and so the energy will 

vary as: 
 

( ) ( )1 1mma b a
m m

b

a b n
E E h h nhf mnhf E E

t t
m

−− ≅ = = −== . (9.17) 

 
This is to say that in classical limit, we expect that energy transitions involving the mth roots of 
unity (which we shall further seek to physically interpret in the next few sections) will have 
energies generally varying in proportion to m, so that higher-mth root transitions are generally 
(i.e. statistically) more energetic than lower ones.  
 
 It at least an item for curiosity that m=1 which corresponds to the conventional DQC 
2eg n= , puts a 3t rather than just a t into the Heisenberg evolution equations.  And this 

originates in the fact that ( )exp 3i ϑ  with the same factor of 3 acts uniformly on all three space 

coordinates as seen in (8.15) to (8.18) and (9.11) to (9.13).  So one may allocate one of these 
three time intervals in 3t to each of the three space coordinates, and contrast this with the natural 
curiosity that there are three space coordinates but only one time coordinate by writing the 
coordinates and matrices in (9.11) for m=1 as ( )3 , , ,t X Y Z .  Whether the concurrence of these 

curiosities has a deeper meaning is not apparent at the moment, but we do point this out for 
reflection.  
 
 Continuing, as is well-known, the formal solution of (9.16) is: 
 

( ) ( ) ( )( ) exp 0 expX t iHt X iHt= − , (9.18) 

 
and if a (0) / 0X t∂ ∂ ≠  is admitted, then we may differentiate (9.18) in a well-known way to: 
 

[ ] ( ) ( ) ( )e exp
0

xp,
X

iHt iHT
dX

i H X
dt t

 ∂
= + 


−∂ 

. (9.19) 

 
Also, as is well known, (9.16) applies to any matrix operator X O→ , that is, the time derivative 

[ ],/idO dt O H=  is obtained by commuting the operator with the Hamiltonian.  Therefore, using 

a non-relativistic Hamiltonian ( )2 / 2H p m V x= +  and taking expectation values, one can shown 

in a well-known way via Ehrenfest that /P md X dt=  and /V d P dt= −∇∇∇∇ , which 

reproduces the classical equations of motion.   
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So, we have now established that the imaginary coordinates which are introduced in 
(8.15) through (8.18) lead to no more and no less than the Heisenberg equations of motion, albeit 
from a different approach point, when these coordinates are promoted to Heisenberg matrix 
operators.  And, we see how the roots of unity not only rotate the space coordinates as in (9.11) 
to (9.13), but also advance these coordinates through 3 /t m units of time.   With this, as well as 
the previous development in sections 1 through 8 we have all the necessary tools to prove, based 
on these root of unity transformations: a) that fractional Dirac magnetic monopole charges (in 
addition to the half-integer charges already established in section 5) may exist for 2m>  without 
observable singularities (section 10); that the even m charges other than m=2 are excluded by 
Lorentz symmetry from physical existence without singularity, so that the physically admissible 
charge fractions, in view of section 5, happen to correspond precisely to the 1,2,3,5,7,9...m =  
fractions observed the Fractional Quantum Hall Effect (FQHE) near 0K (section 11); c) that 
these very same odd m from the roots of unity also are synonymous via 2m j=  with the 

observed Casimir numbers 3 5 71
2 2 2 2, , , ...j =  for the total conserved angular momentum states in 

atomic shells; d) that the tidally-locked m=2 state is related to (Cooper) pairing of electrons near 
0K; and e) how all of these results coact to provide a basis for confirmation via proposed 
experiments which would correlate the fractional charges observed in the FQHE to their angular 
momentum states. 
 
PART IV:  FRACTIONAL DIRAC CHARGES, THE FRACTIONAL QUANTUM 

HALL EFFECT, AND ATOMIC ORBITAL SHELL STRUCTURE 
 
10. Fractional Dirac Magnetic Monopole Charges without Observable 

Singularities 
 
 I this section we are finally prepared to demonstrate how fractional Dirac magnetic 
monopole charges 2 /eg n m=  with m>2 may exist without observable singularities.  Before we 
do this it is important to state that this does not necessarily mean that these charges do exist, or if 
they do, that all charge fractions 1,2,3,4,5...m =  exist as opposed to only some fractions 
existing such as the charges with denominators 2,3,5,7,9... which are observed in the Fractional 
Quantum Hall Effect (FQHE) [5].  The purpose of this section is only to show that these charges 
can exist without observable singularities and therefore cannot be precluded from existing on the 
basis of giving rise to observable singularities.  But this does not mean that there might not be 
other reasons why some charge fractions are excluded from existing, again for example, charges 
with 4,6,8,10... denominators which are not observed in the FQHE.  As we shall see in the next 
section, the 4,6,8,10...m =  even charge fractions are indeed excluded from physical existence, 
not because of any observable singularities, but because such even charge fractions would permit 
the charge to impermissibly change its fraction merely by overtaking that charge through a 
change in relativistic reference frame, and would thus violate Lorentz symmetry. 
 
 The last two sections fundamentally focused on how the spinor transformations of (7.5) 
using the root of unity generators ( )iτ ϑ  of (6.12) map onto the SO(3) space of physical 

existence and observation, and bring about not only spatial rotations through the Euler angle 
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2 / 2n mϑ π π= = ℚ  with is discrete because it excludes the angles 2ϑ π= ℚ , but also bring about 

a unitary time evolution through a time 3 /mt t m=  based on the Heisenberg equations.  Now we 

shall return to working on SU(2) to study the effect of the transformation (7.5) on electron 
wavefunctions ψ   making a 2ϕ π=  non-relativistic azimuthal circuit about a Dirac monopole.  
Because these electrons are posited to be non-relativistic, their boost parameter 0→χ  in (5.3), 
and so any azimuthal rotation which occurs during this circuit will be governed by (5.4).  
Therefore, each of the two-component spinors ,ξ η  in ( ),T T Tψ ξ η=  will transform identically 

under this azimuthal rotation, and as a result, we may apply (7.5) to both ξ  and η  in ψ , and 
therefore, to ψ  overall. 
 
 Now, as we have already shown, it is the unitary matrices iU  of (5.1) which act on SU(2) 

spinors according to iUξ ξ ξ′→ =  via (8.8) and its det 1iU =  specialization (8.9) to generate the 

rotations (8.10) through (8.12) of the space coordinates on SO(3).  Likewise, the root of unity 
matrices (6.12) acting on spinors via iξ ξ τ ξ′→ =  in (7.5) which, via the more general (8.8), 

generate the root of unity transformations (8.15) through (8.17) on SO(3).  As then shown in 
(9.11) through (9.13) these include a time evolution through 3 /mt t m= .  So it is natural to 

inquire what would be the transformation matrices of a rotation via (5.1) combined with a root of 
unity transformation via (6.12).  Finding this out is a straightforward proposition: we simply 
multiply the unitary iU  of (5.1) by the iτ  of (6.12), to arrive at: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1 1
1 1

1 1

1 1 1
2

1 1

cos / 2 sin / 2 cos / 2 sin / 23
exp

sin / 2 cos / 2 sin / 2 cos / 22

cos / 2 sin / 23 3
exp exp exp

2 2 2sin / 2 cos / 2

i i
U i

i i

i
i i i

i

ϑ ϑ θ θϑτ
ϑ ϑ θ θ

θ ϑ θ ϑ θ ϑϑ ϑ σ
θ ϑ θ ϑ

   =    
   

 + + +    
 = =      + +      

, (10.1) 

  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )( ) ( )( )
( )( ) ( )( )

2 2
2 2

2 2

2 2 2
2

2 2

cos / 2 sin / 2 cos / 2 sin / 23
exp

sin / 2 cos / 2 sin / 2 cos / 22

cos / 2 sin / 23 3
exp exp exp

2 2 2sin / 2 cos / 2

U i

i i i

ϑ ϑ θ θϑτ
ϑ ϑ θ θ

θ ϑ θ ϑ θ ϑϑ ϑ σ
θ ϑ θ ϑ

   =     − −   

 + + +    
 = =      − + +      

, (10.2) 

 

( )
( )

( )
( )

( )( )
( )( )

3
3 3

3

3 3
3

3

exp / 2 0 exp / 2 03
exp

0 exp / 2 0 exp / 22

exp / 2 03 3
exp exp exp

2 2 20 exp / 2

i i
U i

i i

i
i i i

i

ϑ θϑτ
ϑ θ

θ ϑ θ ϑϑ ϑ σ
θ ϑ

   =     − −   

 + +    
 = =      − +      

. (10.3) 
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To obtain 1 1Uτ  and 2 2Uτ  one makes use of ( )cos cos sin sin cosα β α β α β− = +  and 

( )cos sin sin cos sinα β α β α β+ = +  which are the angle addition formulae.  And 3 3Uτ  is 

obtained simply by multiplying exponentials. So the effect of combining these two 
transformations is that the Euler angle ϑ  is simply added to the rotation angles iθ  in the form of 

iθ ϑ+ , while additionally the Euler angle introduces the overall factor ( ) ( )det exp 3 / 2i iτ ϑ=  

which as we saw in (9.10) to (9.12) also produces a time evolution through 3 /mt t m= .  This may 

all be consolidated into: 
 

3 3
exp exp exp

2 2 2 2
i i

i i i iU i i i
θ ϑ θ ϑϑ ϑτ σ σ+ +    = = +     

     
. (10.4) 

 
We also note that the order of operation does not matter, [ ], 0i iUτ = , so the eigenvalues of both 

iτ  and iU  are simultaneous observables. 

 
 The next question is, what is the effect of (10.1) through (10.3) on O(3)?  As we did 
previously, we may simply apply (8.8) to (10.1) to (10.3).  The result, compare (8.10) through 
(8.12) and (8.15) through (8.17), turns out simply to be: 
 

( ) ( ) ( )
( ) ( )

1 1 1 1

1 1

1 0 0

exp 3 0 cos sin

0 sin cos

i

x x

y i y R x

z z

ϑ θ ϑ θ ϑ
θ ϑ θ ϑ

    
    = + + ≡ Ρ    

    − + +    

, (10.5) 

 

( )
( ) ( )

( ) ( )

2 2

2 2

2 2

cos 0 sin

exp 3 0 1 0

sin 0 cos

i

x x

y i y R x

z z

θ ϑ θ ϑ
ϑ

θ ϑ θ ϑ

 + − +   
    = ≡ Ρ    

    + +    

, (10.6) 

 

( )
( ) ( )
( ) ( )

3 3

3 3 3 3

cos sin 0

exp 3 sin cos 0

0 0 1

i

x x

y i y R x

z z

θ ϑ θ ϑ
ϑ θ ϑ θ ϑ
 + +   
    = − + + ≡ Ρ    

    
    

. (10.7) 

 
As usual, the angles on SU(2) are always equal to half of the angles on SO(3).  And as before, 
we still have the factor ( )det exp 3i iτ ϑ=  which spawns the 3 /mt t m=  time evolution.  Here too 

the operation order does not matter, [ ], 0i iRΡ = , so these too yield simultaneous observables. 

 
 Now, we update (5.7) to include not only the possibility of an electron rotation under 

( )i iU θ  and a phase change ∆Λ , but also a root-of-unity transformation under ( )iτ ϑ .  So rather 

than ( )(2) 3 expI U iψ ψ ψ+ + +′→ = ⊗ Λ  in (5.7), we now have ( )(2) 3 3expI U iψ ψ τ ψ+ + +′→ = ⊗ Λ , 
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with the additional 3τ  placed in either order relative to 3U  because [ ]3 3, 0Uτ = . In the event that 

this occurs, then using 3θ ϕ=  in (10.3), the explicit wavefunction transformation of (5.7) must 

now be updated to: 
 

( ) ( )rot
(2) 3 3 (2) 3

rot
(2) 3

3
exp exp exp exp

2 2

3
exp

2 2

I U i I i i i

I i

ϕ ϑϑψ ψ τ ψ σ ψ

ϕ ϑ ϑσ ψ

+ + + +

+

+  ′→ = ⊗ Λ = ⊗ Λ   
   

+ = ⊗ + + Λ 
 

, (10.8) 

 
where we have renamed rotϕ ϕ→  to make clear that this represents the rotation of the 

wavefunction as it makes a circuit about the monopoleψ .  It is easily seen that for 0ϑ =  this 
reverts to (5.7).  Now we repeat the analysis of section 5 subsequent to (5.7), but using (10.8) 
instead. 
 
 To avoid an observable singularity under the operation (10.8) after a 2π  azimuthal 
circuit about the monopole, we must have a single valued ψ ψ ψ+ + +′→ =  in (10.8).  And it may 

be seen that (10.8) will yield ψ ψ ψ+ + +′→ =  under the condition that: 

 

( )rot
(2) 3 (4) (4)

3
exp exp 2

2 2
I i I I i n

ϕ ϑ ϑψ σ ψ ψ ψ π ψ+ + + + +
+ ′ = ⊗ + + Λ = = = 

 
, (10.9) 

  
where we have introduced a 4x4 identity matrix (4)I  operating on ψ +  and then used 

( )1 exp 2i nπ= .   We see that this is an eigenvalue equation: 

 

( )rot
(2) 3 (2) (2) (4)

3
exp exp 2 0

2 2
I i I I I i n

ϕ ϑ ϑσ π ψ +
 + ⊗ + + Λ − =  

  
. (10.10) 

 
for the phase difference ∆Λ = Λ , where we explicitly show all the identity matrices. 

 
 Now, at (5.8) we also obtained ( ) ( )( )(2) 3 (4)exp exp 2 0I i I i nσ π π ψ +⊗ + Λ − =  to which 

the above reduces for 0ϑ =  and a tidally-locked rot 2ϕ π= .  We then used ( )3exp i Iσ π = −  to 

simplify the reduction leading to ( )2 1nπΛ = −  in (5.11) and finally to the half integer Dirac 

charges 1
22eg n= −  in (5.13).  Consequently, we could avoid having to fully treat the eigenvalue 

equation.  Now, in (10.10), we can no longer do this.  Now, we must carefully use (10.10) to 
understand the Λ  eigenvalues that it permits, and then relate these to 4 egπ  via (4.5). 
 
 To solve the eigenvalue equation, we first distribute the lead (2)I  to write (10.10) more 

explicitly as: 
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( )

( )

rot
3 (2)

rot
3 (2)

3
exp exp 2 0

2 2

3
0 exp exp 2

2 2

i I i n

i I i n

ϕ ϑ ϑ ξσ π

ϕ ϑ ϑσ π η
+

 + + + Λ −    
    

  +   + + Λ −   
  

.(10.11) 

 
Because the operation on ξ+  and η+  is identical, let us simply focus on the equation for ξ .  And 

while so doing, we note that for a non-relativistic electron ( )1,0,0,0Tψ + ↑ =  i.e. ( )1,0Tξ+ ↑ =  is 

the eigenvector of a spin up (↑ ) electron state and ( )0,1,0,0Tψ + ↓ =  i.e. ( )0,1Tξ+ ↓ =  is that for a 

spin down (↓ ) electron state.  So now, we extract the equation for ξ+  from the above, namely: 

 

( )rot
3 (2)

3
exp exp 2 0

2 2
i I i n

ϕ ϑ ϑσ π ξ+
 + + + Λ − =  

  
, (10.12) 

 
while recognizing that η+  has precisely the same equation. 

 
 Next, we may use (10.4) for i=3 thus 3ϕ θ= , together with the explicit form of (10.3), to 

ascertain that: 
 

( ) ( )

( )( )
( )( )

( )
( )

rot rot
3 3 3

rot

rot

rot

rot

3 3
exp exp exp exp exp

2 2 2 2

exp / 2 03
exp

2 0 exp / 2

exp / 2 2 0

0 exp / 2

ii U i i i i

i
i

i

i

i

ϕ ϑ ϕ ϑϑ ϑτ σ σ

ϕ ϑϑ
ϕ ϑ

ϕ ϑ
ϕ ϑ

+ +    Λ = Λ = + + Λ     
     

 + 
 = + Λ  − +  

 + + Λ
=  − + + Λ 

. (10.13) 

 
As a result, the explicit form of the eigenvalue equation (10.12) is: 
 

( )

( ) ( )
( ) ( )

rot
(2)

rot 1

rot 2

3
exp exp 2

2 2

exp / 2 2 exp 2 0
0

0 exp / 2 exp 2

ii I i n

i i n

i i n

ϕ ϑ ϑσ π ξ

ϕ ϑ π ξ
ϕ ϑ π ξ

+

+

 + + + Λ −  
  

 + + Λ −  
= =  − + + Λ −   

. (10.14) 

 
 This contains is a diagonal matrix, so it is simple to determine eigenvalues. For a spin up 
electron with ( )1,0Tξ+ =  we have: 

 
( ) ( )rotexp / 2 2 exp 2 0i i nϕ ϑ π+ + Λ − = . (10.15) 
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while for spin down with ( )1,0Tξ+ =  we have:  

 
( ) ( )rotexp / 2 exp 2 0i i nϕ ϑ π− + + Λ − = . (10.16) 

 
Isolating the phase, both of these results may respectively be summarized as: 
 

( ) ( )
( ) ( )

rot

rot

: exp exp 2 2 / 2

: exp exp 2 / 2

i i n

i i n

π ϑ ϕ

π ϑ ϕ

↑ Λ = − −

↓ Λ = − +
. (10.17) 

 
 Next, as we earlier did in sections 4 and 5, we again we take the electron wavefunction 
over a complete circuit through a 2π  azimuth which we designate by orb 2ϕ π=  to distinguish 

the azimuthal 2π  “orbital” circuit of the ψ +  wavefunction about the monopole from the rotϕ  

rotation of this wavefunction which may or may not be tidally-locked to its circuit.  So for a 
tidally-locked electron we set rot 2ϕ π=  in the above, while for an electron which does not rotate 

at all during the circuit (which is the implied assumption that leads to the customary DQC 
2e nµ π=  of (4.8)) we set rot 0ϕ =  in the above.  The 2π  associated with the circuit about the 

monopole is not the rotϕ  above; rather it is the ϕ  in the Wu-Yang equation (4.4) which we now 

rewrite with the renamed orbϕ  to distinguish it from rotϕ , as: 

 

( ) ( )orbexp exp 2i i egψ ψ ψ ψ ϕ ψ+ − + + +′→ = = Λ = . (10.18) 

 
For a single circuit about the monopole, orb 2ϕ π= , and the above becomes: 

 

( ) ( )exp exp 4i i egψ ψ ψ ψ π ψ+ − + + +′→ = = Λ =  (10.19) 

 
which is identical with (4.5). 
 
 Now, in order to avert any observable singularities, the electron wavefunction after a 
single orb 2ϕ π=  circuit about the monopole as described by (10.19) above (and the earlier (4.5)) 

must be single-valued, ( ) ( ) ( )orb orb orb0 2 0ψ ϕ ψ ϕ π ψ ϕ+ + +′= → = = = .  The occurrence of this 

single-valued condition ψ ψ ψ+ + +′→ =  is given by (10.9), which after solving its implied 

eigenvalue equation (10.10) enables us to deduce (10.17).  So to ascertain what is required for 
the wavefunction to be single-valued after  a orb 2ϕ π=  circuit, we may equate (10.17) to (10.19).  

This combination of (10.19) being set equal to (10.17) for each of the spin up and spin down 
electrons then produces: 
 

( ) ( ) ( )
( ) ( ) ( )

rot

rot

: exp exp 2 2 / 2 exp 4

: exp exp 2 / 2 exp 4

i i n i eg

i i n i eg

ψ ψ ψ ψ π ϑ ϕ ψ π ψ

ψ ψ ψ ψ π ϑ ϕ ψ π ψ
+ − + + + +

+ − + + + +

′↑ → = = Λ = − − =

′↓ → = = Λ = − + =
. (10.20) 
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This has the respective solutions: 
 

rot

rot

: 2 2 / 2 4

: 2 / 2 4

n eg

n eg

π ϑ ϕ π
π ϑ ϕ π

∆

∆

↑ Λ = − − =

↓ Λ = − + =
, (10.21) 

 
where we once again use the notation ∆Λ  to make clear that this is a change in phase following 

the orb 2ϕ π=  circuit.  This can easily be restructured into: 

 

rot

rot

: 2 / 2 / / 4

: 2 / 2 / 2 / 4

eg n

eg n

π ϑ π ϕ π
π ϑ π ϕ π

∆

∆

↑ = Λ = − −

↓ = Λ = − +
. (10.22) 

 
We see that for rot 0ϕ =  (no tidal lock) and 0ϑ =  these both reduce to 2eg n=  which is the 

standard Dirac Quantization Condition (DQC) of (4.7).  We also see that for 0ϑ =  and rot 2ϕ π=  

where the electron is in a tidal lock with the monopole these reduce to 1
22eg n= ∓ .  This is 

equivalent to 1
22eg n= −  in (5.13) because since n may be any integer, we can simply redefine 

1n n→ +  in 1
22eg n= −  to obtain 1

22eg n= + .  So this provides a check that (10.22) correctly 

reproduces the both the standard result (4.7) and the half-integer result (5.13).  Now let us see 
what further results may be found in (10.22). 
 
 First, we note that n in (10.22) may be any arbitrary integer, and that this n was first 
introduced via ( )1 exp 2i nπ=  at (10.9).  Second, we note that the n in the Euler angle 

2 / 2n mϑ π π= = ℚ  was first introduced at (6.2) to characterize roots of unity.  So these are not 
the same n but are integers which may vary independently of one another.  The only constraint is 
that each of these n must be an integer.  So let us momentarily use 1n  for the integer in (10.22) 

and use 2n  for the integer in ϑ , thus writing 22 /n mϑ π= .  With these notational adjustments to 

segregate the two independent integers, we now substitute 22 /n mϑ π=  into (10.22) to write: 

 

1 2 rot

1 2 rot

: 2 / 2 2 / / 4

: 2 / 2 / / 4

eg n n m

eg n n m

π ϕ π
π ϕ π

∆

∆

↑ = Λ = − −

↓ = Λ = − +
. (10.23) 

 
Now let us further set rot 0ϕ =  to remove any tidal lock, so that the electron travels one circuit 

about the monopole without any rotation via 3U  in (5.1).  This is in fact the way in which the 

standard DQC is obtained, so now the only difference from the standard DQC result is the 
presence of the roots of unity fractions 2 /n m.  So with rot 0ϕ =  the above now becomes: 

 

1 2

1 2

: 2 / 2 2 /

: 2 / 2 /

eg n n m

eg n n m

π
π

∆

∆

↑ = Λ = −

↓ = Λ = −
. (10.24) 
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 Clearly, this describes fractional Dirac magnetic monopoles, given that 2eg  is equal to 

an integer 1n , minus a rational number 22 /n m for spin up and a different rational number 2 /n m 

for spin down.  Now, turning from the general to the specific, let us study this solution for the 
first few integer values of m, paying special attention to the fact that the spin up electron contains 
the rational number 22 /n m while the spin down electron contains the different rational number  

2 /n m.  This correct yet “asymmetric” result originates from ( ) ( ) ( )( )3diag exp 2 ,expi iτ ϑ ϑ=  in 

(6.12), and turns out to be what restricts the charge fractions based on the root of unity 
transformations to being only odd integers.  This is what then raises the question whether this is 
somehow related to the Fractional Quantum Hall Effect (FQHE), which likewise to restricted 
only to odd fractions, aside from the half-integer fraction 2 which correlates to the tidally-locked 
electron developed in section 5. 
 
11. Lorentz Symmetry Restriction of the Fractional Charge 

Denominators to only Odd Integers 
 
 Let us jump right in to studying the eigenvalue solutions (10.24) for each of 

1,2,3,4,5,6m= .  For m=1, (10.24) becomes: 
 

1 2

1 2

: 2 / 2 2

: 2 / 2

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
, (11.1) 

 
which is the standard DQC.  Because 1n  and 2n  are arbitrary integers, we can set 1 2 32n n n− =  

and 1 2 4n n n− = , and then rename each of 3n  and 4n  to n.  So both the spin up and spin down 

states will have the standard charge 2eg n= .  Also, the phase difference 2 nπ∆Λ =  will have its 

initial orientation restored, i.e., there will be a “return to phase” following a orb 2ϕ π=  circuit 

about the monopole, see (4.11) and the subsequent discussion. 
 
 For m=2, which represents the square roots of unity, (10.24) becomes: 
 

1 2

1 2

: 2 / 2

: 2 / 2 / 2 / 2

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
. (11.2) 

 
Here, we again recognize that 1 2n n−  can be renamed to n because this will always yield an 

integer for any and all choices of 1n  and 2n .  Meanwhile, 1 2 / 2n n−  can be renamed to / 2n  

because this will always yield a half integer or a whole integer for any and all 1n  and 2n .  This 

difference between spin up and spin down solutions is a very interesting and fruitful 
development, which we now examine closely. 
 
 Let us suppose that we are observing a spin down electron ψ  interacting with a 
monopole for which n=1 in (11.2), in some frame of reference.  The monopole charge state 
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detected by this spin down electron could therefore be the half-unit 2 1/ 2eg = .  However, it is 
well-known that helicity, which is a conserved quantum number that commutes with the Dirac 
Hamiltonian, is frame-dependent and so can be reversed by a Lorentz transformation which 
overtakes the electron.  So suppose we were to now overtake this electron by moving to a 
different reference frame.  The result in (11.2) for a spin up electron does not permit this 
2 1/ 2eg = , because it requires that 2eg n= , which is the standard DQC.  So the charge 
condition would have to change to a whole-integer condition simply as a result of changing our 
reference frame, which is a physically-dubious proposition.  Because the m=2 states of (11.2) 
would violate Lorenz symmetry because the monople charge would not be Lorentz invariant, we 
are required to exclude these from being physically-observable states.   
 
 As such, while Dirac charges with 2 / 2eg n=  are permitted for electrons which move 
about the monopole in a tidal lock as developed in section 5, they appear to be excluded for root 
of unity transformations, not because of any observable singular behavior, but because spin up 
and spin down electrons when interacting with monopoles are predicted to exhibit different 
monopole charge conditions and one should not expect that a change in reference frame should 
be able to change these charge conditions.  As a result of requiring that the monopole charge 
condition not be changed just because we change the helicity, we use the requirement for Lorentz 
symmetry to exclude m=2 as a physically-observable denominator for a rot 0ϕ =  wavefunction.  

Again, however, m=2 is still permitted, but because of what we found in section 5 for a tidally-
locked rot 2ϕ π=  electron, not because of (10.24) which leads to the unphysical (11.2). 

 
 For m=3, i.e., for the cubed roots of unity with 2 / 3nϑ π=  (10.24) becomes: 
 

1 2

1 2

: 2 / 2 2 / 3 / 3

: 2 / 2 / 3 / 3

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
. (11.3) 

 
Here, by suitable choices of 1n  and 2n  we can generate charges with 2 / 3eg n= , thus one-third 

of a charge and integer multiples thereof.  Because we have the same net result for both spin up 
and spin down, a change in helicity owing to a change in reference frame will not change the 
charge condition.  Because these do not produce observable singularities and the same charge 
conditions apply even if the electron is overtaken by a change in reference frame, this 1/3 charge 
fraction appears to be a physically-permitted state.  In the above, the change in phase for a single 
2π  circuit about the monopole is 2 / 3nπ∆Λ = , which means also that the electron will return to 

phase, 2 nπ∆Λ = , after a orb 6 3 2ϕ π π= = ⋅  circuit about the monopole.  So (11.3), and 

specifically 2 / 3eg n= , is the smallest charge fraction permitted for a rot 0ϕ =  electron.  It is 

worth being reminded that for m=3, ( ) ( ) ( )det exp 3 exp 6 / 3 exp 2 1i i i n i nτ ϑ π π= = = = , which is 

a special and unique case.  So it would be possible for this special case to set ( )exp 3 1i ϑ =  in 

(9.11) through (9.13) and miss the fact that keeping the ( )exp 2i nπ  in place next to ( )0iX  in the 

form of ( ) ( )exp 2 0ii n Xπ  is tantamount, in the classical correspondence, see (9.2) and (9.4), to 

generating a unitary time evolution through 3 3 / 3t t t= = . 
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 This is also a good place to point out how, in the standard Dirac monopole theory, it is 
believed that 2 nπ∆Λ =  must hold after each orb 2ϕ π=  circuit about the monopole.  But this is 

because the only root of unity that is considered in the standard theory is the trivial identity (2)I  

and not any of its roots of unity.  In reality, (10.19) is the fundamental condition which must be 
obeyed in order to avoid observable singularities, whereby the electron wavefunction ψ  must 

remain single valued after each and every orb 2ϕ π=  circuit.  We learn from (10.17) that absent a 

root of unity transformation ( 0ϑ = ) and absent a rotation (rot 0ϕ = ) the phase factor will be 

given by ( ) ( )exp exp 2 1i i nπΛ = =  so that the single-valued wavefunction mandate of (10.19) 

will become ( ) ( ) ( )exp exp 4 exp 2i i eg i nψ π ψ π ψ+ + +Λ = = , which recovers the standard DQC 

2eg n= .  But otherwise, if there is either a rotation (rot 0ϕ ≠ ) or a root of unity besides (2)I  

operating on the spinors ( 0ϑ ≠ ), the factor ( )exp iΛ  in (10.17) will no longer be 

( ) ( )exp exp 2 1i i nπΛ = = , but will come a complex number with a magnitude equal to 1 but a 

different orientation.  So as seen in (10.21), the phase difference ∆Λ  will be something other 

than 2 nπ , which will in turn force the Dirac monopole charge condition to be something other 
than 2eg n= , and specifically, will force it to become (10.22).  This demonstrates how and why 
fractional Dirac monopole charges may indeed exist without observable singularities, which is 
the fundamental thesis of this paper.  
 
 For m=4, i.e. for the fourth roots of unity, (10.24) becomes: 
 

1 2

1 2

: 2 / 2 / 2 / 2

: 2 / 2 / 4 / 4

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
. (11.4) 

 
Here, we have the same problem as in (11.2) wherein a change in reference frame which flips 
helicity would cause the charge condition to change.  So for the same reason, requiring that the 
monopole charges must be Lorentz invariants, we exclude quarter-unit charges. 
 
 For m=5, the fifth roots of unity with 2 / 5nϑ π= , (10.24) yields: 
 

1 2

1 2

: 2 / 2 2 / 5 / 5

: 2 / 2 / 5 / 5

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
. (11.5) 

 
This does not have the helicity problem of m=2 and m=4, and yields no observable singularities.  
So we regard this 1/5 charge fraction to be a physically-permitted state.  The phase change is 

2 / 5nπ∆Λ =  so this will return to phase after a after a orb 10 5 2ϕ π π= = ⋅  circuit about the 

monopole circuit.  Again, while it takes five 2π  circuits for the phase to regain its oritnation, the 
electron wavenction does remain single-valued after each and every 2π  circuit.  Therefore, these 
2 / 5eg n=  fractions may also exist without observable singularity. 
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 Finally, let’s look at (10.24) for m=6.  Here we have: 
 

1 2

1 2

: 2 / 2 / 3 / 3

: 2 / 2 / 6 / 6

eg n n n

eg n n n

π
π

∆

∆

↑ = Λ = − =

↓ = Λ = − =
. (11.6) 

 
We once again have the helicity problem of m=2 and m=4, and so also need to exclude m=6. 
 
 In general, it will be seen that for odd 2 1 1,3,5,7...m l= − =  it is possible for the ↑  and ↓  

values of 2eg  to be equal, ( )2 / / 2 1eg n m n l= = − .  So there are no observed singularities 

because the wavefunction is single valued following a 2π  circuit, and also, there is no change in 
the charge condition following a helicity flip so the Lorentz symmetry of the charges is 
preserved.  As a result, we regard these odd-fractions to be physically viable states which might 
be observable under some set of conditions.  In contrast, for any even 2 2,4,6,8...m l= =  fraction 
(absent a tidal lock), the spin down values will always be 2 /eg n m=  but the spin up value will 
be more tightly restricted to 2 2 /eg n m= .  Thus a spin down unit charge with, say, 2 1/eg m= , 
if overtaken, would be required to change its charge to some 2 2 /eg n m= , which we take to be 

physically impossible.  As a result, for a rot 0ϕ =  wavefunction, Lorentz symmetry appears to 

exclude all even-integer monopole charge denominators from being physically-permitted states, 
with the exception of m=2 which arises not based on roots of unity, but on a tidal lock between 
the electron and the monopole. 
 
 So, we see that the odd-charge fractions are permitted without observable singularity, but 
the even charge fractions are excluded as a result of the Lorentz Symmetry of Special Relativity.  
Based on section 5, however, see for different reasons that m=2 is permitted as the only even-
denominator charge, not because of the root-of-unity transformations, but because of the electron 
being in a tidal lock as it circuits about the monopole.  To summarize: the permitted fractions 
which are not observably singular and which do not raise violate Lorentz symmetry are 
2 / 2eg n=  for a tidally-locked rot 2ϕ π=  electron based on its rotation, and 

2 / 3, / 5, / 7, / 9...eg n n n n=  for a rot 0ϕ =  electron with no tidal lock based on a root of unity 

transformation.   Taken together, the permitted Dirac fractions which are non-singular and 
Lorentz invariant, including the conventional 2eg n= , are summarized by: 
 

2 ; 1,2,3,4,5...; 1,2,3,5,7,9...
2

n
eg n m

mπ
∆Λ= = = =  (11.7) 

 
Consequently, the only permitted charge factions are those with odd denominators, with the sole 
exception of the even denominator 2.  The odd denominators arising from root of unity 
transformations, and the even denominator 2 arises from a tidal lock of the electron with the 
monopole.  It is impossible not to appreciate that these are precisely the same charge fractions 
experimentally observed in the Fractional Quantum Hall Effect (FQHE), which raises the 
question whether these are related to the result in (11.7). 
  
 In general, (11.7) also states that after a orb 2ϕ π=  circuit the phase change will be: 
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2 /n mπ∆Λ = . (11.8) 

 
Therefore, the electron will only return to phase after a orb 2 mϕ π=  circuit, that is, only after 

making m circuits about the monopole.  The m=2 charge for an electron in tidal lock returns to 
phase after orb 4 nϕ π=  which is due to the flipped-sign wavefunction version that occurs 

following 2π  rotations which sign does not get restored until after a 4π  rotation.  This 
circumstance, as noted, is often described in relation to orientation / entanglement, again, see the 
discussion after (5.14) here and section 41.5 of [4].  The 1,3,5,7,9...m =  states which have odd 

denominators based on roots of unity return to phase after ( )orb 2 2 1 2 , 6 ,10 ,14 ...lϕ π π π π π= − =  

and thus return to phase after circuits which differ from one another by orb 4 nϕ π∆ = . 

 
 Finally, we may use (11.7) in (4.12) to write the monopole potentials for all the permitted 
fractional charge states, contrast (4.12), as: 
 

( )

( )

1
cos 1

2
1

cos 1
2

n
eA d

m
n

eA d
m

θ ϕ

θ ϕ

+

−

≡ −

≡ +
, (11.9) 

 
with 1,2,3,4,5...n =  and 1,2,3,5,7,9...m = . 
 
NOTE: THESE NEXT TWO SECTIONS HAVE NOT BEEN REVIEWED FOLLOWING 
MY DISCOVERY THAT THE EXPONENTIAL ( )exp 3i ϑ  GENERATES TIME 

EVOLUTION AS SEEN IN (9.11) THROUGH (9.13).  I AM PLANNING SOME MAJOR 
RESTURTURING OF THESE NEXT TWO SECTIONS TO REFLECT THIS NEW 
UNDERSTANDING.  BUT EVERYTHING ABOVE THIS PLACE, I.E. SECTIONS 1 
THROUGH 11, ARE PRETTY WELL SETTLED AND I EXPECT THESE TO REMAIN 
AS IS WITH RELATIVELY MINOR CHAGES FROM HERE. 
 
12. Might Root of Unity Transformations be Synonymous with 

Wavefunction Transformations into Different Orbital Angular 

Momentum States of Atomic Shell Structure? 
 
 It is of interest that the permitted fractional charges 2 /eg n m=  of (11.7) arising from the 

root of unity generator 3τ  for (6.12) are naturally restricted by helicity considerations to the odd 

integer denominators 1,3,5,7,9...m = , and that the only permitted even denominator is m=2 as 
shown in (5.14).  First – whether a real connection or merely a coincidence, which must be 
studied theoretically and experimentally – it just so happens that these are precisely the same 
factional charge denominators empirically observed in the Fractional Quantum Hall Effect 
(FQHE) at ultra-low temperatures near 0K.  These are typically represented by the fill factors 

/n mν =  with 1,2,3,5,7,9...= .  Second, the exclusion of even denominators other than 2 is not a 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

47 
 

condition imposed in order to fit the FQHE.  Quite the converse, it is the requirement that the 
charge condition at any given root of unity m remain invariant with respect to the flipping of 
helicity, which theoretically compels the exclusion of the even denominator states other than the 
tidally-locked m=2.  So in a very basic sense, even-numbered denominators are excluded by the 
Lorentz symmetry of special relativity.  Third, the even denominator 2 arises when an electron 
wavefunction completes a 2π  circuit about the monopole in a tidal lock with the monopole, 
which is a different theoretical cause than the root-of-unity transformations that yield the odd-
integer fractional denominators.  Fourth, see, e.g., Figure 3 at [9], for the odd-integer fractions 
the empirical curves mapping the Hall resistance RH against the strengths of the applied 
perpendicular magnetic field are deep and narrow with RH becoming very small at any given 
fractional plateau, while for the even-fraction m=2 the curve is wider and shallower, with RH 

remaining substantially non-zero.  This qualitative difference in the empirical data suggests that 
the odd fractions have a different empirical cause than the half-integer fractions.  This is 
consistent with the different theoretical causes whereby the odd fractions arise from root of unity 
transformations and the even faction m=2 arises from a tidal lock.   
 

Given the foregoing, it is difficult not to at least suspect a possible physical connection 
between fractional Dirac monopoles and FQHE charge fractions.  If such a connection can be 
established theoretically and confirmed experimentally, this would mean that the FQHE provides 
direct albeit heretofore-unrecognized experimental evidence that U(1)em magnetic monopoles do 
exist in nature, at least in the ultra-low temperature environment.  Consequently, it behooves us 
to gain a better understanding of what it really means – physically, not mathematically – to 
subject a spinor ξ   – and by implication a wavefunction ψ   –  to a root of unity transformation 

3ξ ξ τ ξ′→ =  about the z axis.  As we shall now see, these root of unity transformations exhibit 

behaviors which map very directly to the quantized behaviors of electrons in atomic shells, 
suggesting that atomic structure is the prime suspect to provide a physical understanding of root 
of unity transformations. 
 
 Mathematically, roots of unity (6.1) are multivalued numbers all with the same 
magnitude 1, but with an Euler angle 2 / 2n mϑ π π= = ℚ  from (6.2) which points each of these 
roots in a unique direction in the complex plane.  So, for example, the first root of unity 

( ) /1
1 1 1

n n= = +  has a single value 1+ , at an angle 360ϑ = ° , which remains the same for all 

iterative multiples of 360° .  The square roots of unity ( ) /2
1 1

n = ±  have two values, 1∓  for 

1,2n =  respectively at angles 180 ,360ϑ = ° ° , with iterative cycling for 2n > .  The cubed roots 

of unity ( ) /3
1

n
 have the three values ( )1

2 1 3i− ∓  and +1, for n=1,2,3 and 120 ,240 ,360ϑ = ° ° °  

respectively, with iterative cycling for 3n > .  Indeed, the primitive, non-trivial roots 

( )1
2 1 3i− ∓ , although complex numbers, have a magnitude ( ) ( )1 1

2 21 3 1 3 1i i− − − + = , and so 

may easily be thought about together with the trivial root +1 as a ±  sign with the three values, 

not two.  The fourth roots of unity ( ) /4
1

n
 have the four values , 1, ,1i i− −  for 1,2,3,4n =  and 

90 ,180 ,270 ,360ϑ = ° ° ° ° , respectively, with iteration thereafter, and so are a four-valued analogy 

to a ±  sign.  And so on for all other roots.  So any root of unity ( ) /
1

n m
 has precisely m distinct 

values which then recycle after each 2π  cycle in the complex plane, and these roots may be 
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thought of as an m-valued ±  sign which consists of complex numbers with magnitude 1.  They 
are distinguished form one another solely by their Euler angle 2 /n mϑ π= .    
 
 Equivalently, and more physically, we can think of the roots of unity as providing a “root 
of unity degree of freedom,” whereby the number 1 can take on a total of exactly m distinct 

values for any given unity root ( ) /
1

n m
.  Each ( ) /

1
n m

 with 1 n m≤ ≤  for a given m can be thought 

of as a generalization of electron “versions” from the two versions discussed in section 5, to m 
versions for which the two-versioned ±  sign is simply represented by the special case 

( ) /2
1 1

n± = .  The reason we wish to think about this root of unity multi-valuedness as being a 

degree of freedom, aside from this being a step closer from mathematics to physics, is because 
when we start to talk about fermions – and electrons are quintessential fermions – the Exclusion 
Principle demands that only way one can assemble a system of fermions containing more than 
one fermion, is to provide each fermion with a unique set of quantum numbers that distinguish it 
from all the other fermions in that system.  But, at bottom, these exclusive quantum numbers are 
simply multi-values permitted by some degree or degrees of freedom.  So the question we shall 
now consider is whether the multi-valuedness of the roots of unity – when generalized to the 2x2 
root of unity matrices developed in section 6 – is in fact related to the degrees of freedom and 
quantum-numbered-values that electrons must have in order to coexist in the shells of the same 
atom consistently with Exclusion.  If so, then we can acquire a more direct physical 
understanding of what it means to subject a fermion to what we have all along called a “root of 
unity transformation,” and further, can relate the fractionalized Dirac monopoles not only to low-
temperature FQHE physics, but also to atomic structure, with opportunities for direct 
experimental validation of the results presented here.  So let us now proceed. 
 
 The smallest fractional charge permitted by (11.7) based on the root of unity degree of 
freedom, beyond the m=1 state 2eg n=  of the standard DQC, is the m=3 fraction 2 / 3eg n=  for 
which 2 / 3 120n nϑ π= = ⋅ ° .  (Again, m=2 has a different genesis in the tidal lock reviewed in 
section 5.)  As discussed near the end of section 9, when m=3 the discretized space and time 
transformation (9.18) with the jΣ  and ijδ  suppressed becomes: 

 

( ) ( )
( ) ( )

cos 2 sin 2

sin 2 cos 2

i i j

i i j

n nt t t

n nx x x

π π
χ χ χ

π π
Μ Μ Μ    ′   

′= → = = =      −′      
 (12.1) 

 
So in sum, for m=3, and indeed uniquely to only m=1 and m=3, there is no Euclidean space and 
time mixing.  Let us now study m=3 in further depth, as an important example. 
 
 The m=3, n=1 generators for which 2 / 3 120ϑ π= = ° , using ( )exp 1iπ = −  as well as 

( )cos / 3 1/ 2π =  and ( )sin / 3 3 / 2π =  and the sign behaviors of sin and cos in the four 

quadrants  of the 0 2iθ π≤ ≤  domain, are ascertained from (6.12) to be:  
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1 2 3

1 3 1 3 1 3 02 1 2 1 2 1
; ;

3 2 3 2 3 23 1 3 1 0 1 3

i i

i i

π π πτ τ τ
     +     = − = − = −                    − −     

.(12.2) 

 
For m=3 and n=2 we have 4 / 3 240ϑ π= = °  which flips the sign of the sin but not of the cos.  
These iτ  generators are the squares 2

iτ   of each of (12.2) as is easily checked, and are: 

 

1 2 3

1 3 1 3 1 3 04 1 4 1 4 1
; ;

3 2 3 2 3 23 1 3 1 0 1 3

i i

i i

π π πτ τ τ
     − − −     = − = − = −                    − +     

.(12.3) 

 
Of course for 3m n= =  we have 2 360ϑ π= = °  and all three (2 )i iIτ π = , the 2x2 identity triplet. 

 
 So now, focusing on the azimuthal generator 3τ  about the z axis, let us transform a spinor 

via 3ξ ξ τ ξ′→ = .  As already reviewed near (5.4) and (5.5) and again near the start of section 10, 

if we take the electron ψ  to be non-relativistic (no boost), then the entire Dirac wavefunction ψ  

will transform in the same manner as 3ξ ξ τ ξ′→ =  acting on the spinor and so we may use the 

spinor ξ  as a proxy for the complete ψ .  So we take ( )1 2,Tξ ξ ξ=  as in section 7, and as 

observed at (10.2) we recognize that ( )1,0Tξ =  corresponds with a spin up ( )1,0,0,0Tψ =  while 

( )0,1Tξ =  corresponds with a spin down ( )0,1,0,0Tψ = .  (At this point, we no longer need the 

“+” subscript introduced at (2.1).)  So to directly and symbolically remind us of these spin 
correspondences, let us now denote this spinor as ( ),Tξ = ↑ ↓  rather than ( )1 2,Tξ ξ ξ= .  

Consequently, the transformation 3(2 / 3)ξ ξ τ π ξ′→ =  is explicitly given using (12.2) by: 

 

( )
( )

( )
( )

1 1/3
2

3 1/3
1
2

1 3 11 3 01 1
2

3 2 0 1 3 11 3

ii

i i
ξ ξ τ π ξ

−

+

 − + ↑    ↑− −′     ↑ ↑ ↑     ′= → = = + = = =            ′↓ ↓ ↓  − + ↓       − − ↓    

.(12.4) 

 
Likewise we turn to the transformation 3(4 / 3)ξ ξ τ π ξ′′→ = .  But before we do this, because of 

the cyclical nature of 2 / 2n mϑ π π= = ℚ , let us instead write the root of unity generator as 

3 3(4 / 3) ( 2 / 3)τ π τ π= −  using a negative angle.  In short, we make use of the cyclical nature of 

trigonometric functions to work in the domain π ϑ π− ≤ ≤ +  rather than 0 2ϑ π≤ ≤ .  The results 
are the same, but the domain π ϑ π− ≤ ≤ +  displays certain symmetries of interest that 
0 2ϑ π≤ ≤  does not.  Thus, we use (12.3) represented by 3 3(4 / 3) ( 2 / 3)τ π τ π= −  to write: 

 

( )
( )

( )
( )

1 1/3
2

3 1/3
1
2

1 3 11 3 01 1
2

3 2 0 1 3 11 3

ii

i i
ξ ξ τ π ξ

+

−

 − − ↑    ↑− +′′     ↑ ↑ ↑     ′′= → = = − = = =            ′′↓ ↓ ↓  − − ↓       − + ↓    

.(12.5) 
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And of course if we use 3 (2)(0) Iτ =  now that our domain is π ϑ π− ≤ ≤ + , then for the trivial root 

at 0ϑ =  we have merely ξ ξ ξ′′′→ = . 
 
 Reviewing the primitive root transformations (12.4) and (12.5) together with the trivial 
ξ ξ ξ′′′→ = , we see that there are a total of six (6) distinct states for m=3.  Over the domain 

π ϑ π− ≤ ≤ + , first, for what we write as 0 2 / 3ϑ π= ⋅  there are the untransformed ( )0
1′′′↑ = ↑  

and ( )0
1′′′↓ = ↓ .  Second, also referring to (6.1), for what we write as 1 2 / 3ϑ π= + ⋅  there are the 

transformed ( ) ( ) 1/31
2 1 3 1i

−′↑ = − + ↑= ↑  and ( ) ( ) 1/31
2 1 3 1i

+′↓ = − − ↓= ↓ .  Finally, for what we 

write as 1 2 / 3ϑ π= − ⋅  there are the transformed ( ) ( ) 1/31
2 1 3 1i

+′′↑ = − − ↑= ↑  and 

( ) ( ) 1/31
2 1 3 1i

−′′↓ = − + ↓= ↓ .  So, if we now define a first quantum number 1 1zl− ≤ ≤ +  so we 

may summarize these three roots of unity as ( ) /3
1 zl , and if we define a second quantum number 

1
2zs = ±  which corresponds to ↑  and ↓ , and if we define a third quantum number z z zj l s≡ + , 

then we may summarize these six states as follows: 
 

( )
( )
( )
( )
( )
( )

1/3 31
2 2

1/3 1 1
2 2

0 1 1
2 2

0 1 1
2 2

1/3 1 1
2 2

1/3 31
2 2

1 1, , , 1 2 / 3

1 1, , , 1 2 / 3

1 0, , , 0 2 / 3

1 0, , , 0 2 / 3

1 1, , , 1 2 / 3

1 1, , , 1

z z z

z z z

z z z

z z z

z z z

z z z

l s j

l s j

l s j

l s j

l s j

l s j

ϑ π

ϑ π

ϑ π

ϑ π

ϑ π

ϑ

+

+

−

−

↑≡ = + = + = = − ⋅

↓≡ = + = − = = + ⋅

↑≡ = = + = + = ⋅

↓≡ = = − = − = ⋅

↑≡ = − = + = − = + ⋅

↓≡ = − = − = − = − ⋅2 / 3π

 . (12.6) 

 
This is of high interest, because the root of unity generators effectively take each of the 

two ↑  and ↓  states and multiply them with a cubed root of unity that has a magnitude of 1 but 
variable direction, triplicating ↑  and ↓  into a total of six states which all together may be 
characterized over the π ϑ π− ≤ ≤ +  domain by azimuthal quantum numbers that correspond 
precisely to six permitted exclusionary electron states in the p shells of atoms which are likewise 
characterized by azimuthal quantum numbers.  And in particular, the degree of freedom provided 
by the multi-valuedness of the root of unity generators – now characterized by 1,0, 1zl = − +  and 

obtained by a rotation in the complex plane based on a z-axis generator – maps precisely to the 
degrees of freedom provided by the z-axis component of orbital angular momentum, often 
denoted by the same symbol zl m=  (a different “m” from the one we have been using as the 

fractional root of unity denominator.).   
 
Additionally, if we do treat these , ,z z zl s j  quantum numbers as the third component of 

operators , ,i i il s j= = =L S J  with Casimir numbers , ,l s j  defined respectively in the usual way 
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by ( )2 1l lξ ξ= +L , ( )2 1s sξ ξ= +S  and ( )2 1j jξ ξ= +J  thus j l s= + , then all of the 

m=3 states in (12.6) have the common set of Casimir numbers 1l = , 1
2s =  and 3

2j = .   So not 

only is there a one-to-one, azimuth-to-azimuth mapping between the six states of (12.6) and the 
six states of a p-shell electron all of which represent operations through an azimuth ϕ  about the 
z axis, but the mapping is structurally isomorphic because these each arise from two degrees of 
freedom, one being the three cubed roots of unity, the other the two intrinsic spin states.  To 
summarize this mapping of these 6 2 2 3m= ⋅ = ⋅  states, we may write: 
 

( ) ( ) ( ){ } { } { } { }1/3 0 1/3 31
2 26 : 1 , 1 , 1 , : 1, ,z zl s p l s j

− + ⊗ ↑ ↓ ⇔ ⊗ ⇔ = = = , (12.7) 

 

using the set of cubed roots of unity ( ) ( ) ( ){ }1/3 0 1/3
1 , 1 , 1

+ −
 composed with the set of up and down 

spins { },↑ ↓ .  And, of course, because m=3, via (11.7), these are also the states for which the 

fractional Dirac charges are given by 2 / 3eg n= , that is, these are the 1/3-unit Dirac monopole 
charge states.  This would suggest, if these mappings are meaningful and there is a connection 
between fractional Dirac monopoles and the observed FQHE charges, that one should be able to 
observe six (6) distinct spin states for the 1/3 charge fractions, namely those of (12.6), and that 
the electrons (presently thought of as quasi-particles) connected with these observed 1/3 
fractional charge states should correlate to 31

2 2: 1, ,p l s j= = =  state electrons. 

 
 This raises two questions: First, does this pattern generalize to other atomic shell 
structures?  Second, if it does generalize, does it make physical sense to entertain the possibility 
that the root of unity degree of freedom is simply the orbital angular momentum degree of 
freedom in a different guise?  We take these two questions in succession. 
 
 As to generalization, saving the (here, unnecessary) difficulty of solving the polynomial 

1

0
0

m i

i
x

−

=
=∑  in (6.14), we first use (6.1) to write 3τ  from (6.12) directly terms of unity roots as: 

 

( ) ( )
( )

( )( )
( )

( )
( )

2 /

3 /

exp 2 2 / 0 1 0exp 2 0

0 exp 0 exp 2 / 0 1

n m

n m

i n mi

i i n m

πϑ
τ ϑ

ϑ π

   
 = = =           

. (12.8) 

  
Therefore, the general transformation 3ξ ξ τ ξ′→ =  is now: 

 

( )
( )

( )
( )

2 / 2 /

3 / /

1 0 1

0 1 1

n m n m

n m n m
ξ ξ τ ξ

   ↑′     ↑ ↑ ↑
   ′= → = = = =     
   ′↓ ↓ ↓ ↓        

. (12.9) 

 
So now let’s sample m=5, the fifth root of unity, which is the next higher fraction permitted by 
(11.7).  The five distinct states have 1,2,3,4,5n = , although n=5 is the trivial ξ ξ ξ′→ =  while 
the other four states are primitive roots.  Working with the domain π ϑ π− ≤ ≤ +  for which the 
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Euler angles are 0 , 72 , 144ϕ = ° ± ° ± °  and given the recycling of roots of unity, we may also 
represent these recycling states as 2, 1,0, 1, 2n = − − + +  which as we see sets up an 2l =  Casimir 
number for the orbital quantum number.  So setting m=5 in (12.9) and inserting each of 

2, 1,0, 1, 2n = − − + +  and using recycling, and also indicating the Euler angle 2 / 5nϑ π= , we 
obtain the five transformations: 
 

( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

4/5 1/5

2/5 2/5

2/5

1/5

0

0

2/5

1/5

1 1
2 2 / 5 :

1 1

1
1 2 / 5 :

1

1
0 2 / 5 :

1

1
1 2 / 5 :

1

1
2 2 / 5 :

ϑ π

ϑ π

ϑ π

ϑ π

ϑ π

− +

− −

−

−

+

+

   ↑ ↑′ ↑
   = − ⋅ = = 
   ′↓ ↓ ↓     

 ↑′ ↑
 = − ⋅ = 
 ′↓ ↓   

 ↑′ ↑
 = ⋅ = 
 ′↓ ↓   

 ↑′ ↑
 = + ⋅ = 
 ′↓ ↓   

′ ↑
= + ⋅ = ′↓  ( )

( )
( )

4/5 1/5

2/5 2/5

1

1 1

+ −

+ +

   ↑ ↑
   =
   ↓ ↓   

. (12.10) 

 
We then reassemble these into the form of (12.6) to enumerate the ten (10) distinct states: 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

2/5 51
2 2

2/5 31
2 2

1/5 31
2 2

1/5 1 1
2 2

0 1 1
2 2

0 1 1
2 2

1 2, , , 1 2 / 5

1 2, , , 2 2 / 5

1 1, , , 2 2 / 5

1 1, , , 1 2 / 5

1 0, , , 0 2 / 5

1 0, , ,

z z z

z z z

z z z

z z z

z z z

z z z

l s j

l s j

l s j

l s j

l s j

l s j

ϑ π

ϑ π

ϑ π

ϑ π

ϑ π

ϑ

+

+

+

+

↑≡ = + = + = + = + ⋅

↓≡ = + = − = + = + ⋅

↑≡ = + = + = + = − ⋅

↓≡ = + = − = + = + ⋅

↑≡ = = + = + = ⋅

↓≡ = = − = − = ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1/5 1 1
2 2

1/5 31
2 2

2/5 31
2 2

2/5 51
2 2

0 2 / 5

1 1, , , 2 2 / 5

1 1, , , 1 2 / 5

1 2, , , 1 2 / 5

1 2, , , 2 2 / 5

z z z

z z z

z z z

z z z

l s j

l s j

l s j

l s j

π

ϑ π

ϑ π

ϑ π

ϑ π

−

−

−

−

⋅

↑≡ = − = + = − = + ⋅

↓≡ = − = − = − = − ⋅

↑≡ = − = + = − = − ⋅

↓≡ = − = − = − = − ⋅

. (12.11) 

 
 This provides a different view of the results at (11.1) through (11.6) which led to the 
inclusion of odd-integer factions and the exclusion of even-integer fractions.  When we write the 
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transformation 3ξ ξ τ ξ′→ =  as in (12.9), we see very clearly that the eigenvalues for ↑  are 

( )2 /
1

n m
 while those for ↓  are ( ) /

1
n m

.  More symbolically, ( )2 /

3 1
n mτ↑= =  and ( ) /

3 1
n mτ↓= = , 

where the factor of 2 is an essential aspect.  This is why in (12.11) the ↓  states cycle the 
coefficient of 2 / 5π  in ϑ  in harmony with zl , but the ↑  states cycle at twice the rate, see also 

(12.11).  Nonetheless, for odd m only, over the full domain π ϑ π− ≤ ≤ + , we end up with all the 
roots of unity being distributed to both spin up and spin down in the manner of (12.7), which for 
(12.11) has 10 2 2 5m= ⋅ = ⋅  states we may write as: 
 

( ) ( ) ( ) ( ) ( ){ } { } { } { }2/5 1/5 0 1/5 2/5 51
2 210 : 1 , 1 , 1 , 1 , 1 , : 2, ,z zl s p l s j

− − + + ⊗ ↑ ↓ ⇔ ⊗ ⇔ = = = . (12.12) 

   
So this does indeed have the ten (10) azimuthal states in which d-shell electrons may be found.  
And it can readily be shown that this pattern this will hold for f, g, h… and other electrons 
permitting 14, 18, 22... states with 7 9 11

2 2 2, , ...j = .  So as to whether this pattern generalizes, the 

answer is yes.  For m=1 which yields via (11.7) the standard DQC 2eg n=  of (4.7), we have 

( ) ( )0 1 1
2 21 0, , , 0 2z z zl s j ϑ π↑≡ = = + = + = ⋅  and ( ) ( )0 1 1

2 21 0, , , 0 2z z zl s j ϑ π↓≡ = = − = − = ⋅ , 

which are simply the two (2) states permitted for s-shell electrons. 
 

In contrast, were m=2,4,6,8… to be an even integer, we would lose some states, which is 
another view of why even integers are excluded but odd integers are permitted.  Take m=4, for 
example, and let’s go back to using the domain 0 2ϕ π< ≤  thus n=1,2,3,4.  Because 

( ) /4

3 1
nτ↓= = , the pattern of the root numerators will be 1,2,3,4.  But because ( )2 /4

3 1
nτ↑= = , 

the root numerator pattern here will be 2, 4, 6�2, 8�4 when we account for recycling.  We 
would thus duplicate the even numerators, and exclude the odd numerators, but only for spin up 
and not for spin down.  This is the intrinsic pattern for any and all even m.  But let’s look at odd 

m, now using m=7 as an example.  Here, the numerators for ( ) /7

3 1
nτ↓= =  in the 0 2ϕ π< ≤  

domain are 1,2,3,4,5,6,7.  And over the same domain the numerators in ( )2 /7

3 1
nτ↑= = , 

including recycling, are 2,4,6,8�1,10�3,12�5,14�7.  So all the seventh roots are included 
because all of the numerators 1,2,3,4,5,6,7 do occur but in the 2,4,6,1,3,5,7 sequence, and there 
are no excluded states.  This is the intrinsic pattern for any and all odd m.  Again, this is another 
vantage point on (11.1) to (11.6) which caused us to discard the even-integer m as unphysical on 
helicity grounds.  So referring to (11.4) and the m=4 example just discussed, the odd numerators 
are skipped for ↑  but not for ↓ , which means that the charge fractions for the former are 
2 / 2eg n=  and for the latter are 2 / 4eg n= , which means that if we Lorentz transform so as to 
flip the helicity we can alter the charge, which is an unphysical result, which is why even-integer 
charge fractions must be physically excluded (except m=2 based on the tidal lock and not the 
roots of unity).   

 
These patterns may also be concisely characterized using modular arithmetic.  The least 

residue for modn m is the set 0,1,2,3... 1m− , which we shall denote as modn m where we 
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define the symbol mod with an underbar to mean “least residue modulo.”   So using this 
notation, mod 2 modn even n even≠  but mod 2 modn odd n odd≠  for even and odd integers.  

With the same examples used above, we have { } { }mod 4 0,1, 2,3 2 mod 4 0, 2n n≡ ≠ =  for 

4even= , and { } { }mod 7 0,1, 2,3, 4,5,6 2 mod 7 0, 2,4,6,1,3,5n n≡ = =  for 7odd = .  The former 

is missing odd elements from the 2 mod 4n  set, while the later 2 mod7n  contains all the same 

elements as mod7n , but simply generated in a different order.  And this pattern applies to all 
integers both odd and even. 

 
Then, to “balance” this least residue symmetrically about zero which can only be done for 

odd m, we need to subtract ( )1 / 2m−  from modn m, thus forming ( )mod 1 / 2n m m− − .  To 

simplify we further introduce the notation “ 0mod ” to denote this least residue modulo when 

symmetrized about zero, such that ( )0mod mod 1 / 2n m n m m≡ − − .  This “symmetric least 

residue modulo” exists only for odd integers, which is another reflection of the odd-integer 
restriction first uncovered at (11.1) through (11.6).  But these are the same integers that we have 
heretofore denoted as zl , which is to say that: 

 

( ) 0mod 1 / 2 modzl n m m n m= − − = . (12.13) 

 
And this in turn means that: 
 

( ) ( )1 / 2 1 / 2zm l m− − ≤ ≤ + − . (12.14) 

  
At the same time, the outer bounds on zl  are given by l± , so the above may be connected to: 

 

( ) ( )1 / 2 1 / 2zl m l m l− = − − ≤ ≤ + − = + . (12.15) 

 
And from this, given also that 1

2s =  and that j l s= + , we find that: 

 
1

2 2

m
l l s j= + = + = . (12.16) 

  
 With this final observation that ( )2 2j l s m= + =  for all the odd fractions, we return to 

(11.7) and now write the Fractional Dirac Quantization Condition (FDQC) as:  
 

( ) ( ) ( )1
22 ; 1,2,3,4,5...; 2 2 2 1,2,3,5,7,9...

2 2

n n n
eg n m j l s l

m j l s
= = = = = = + = + =

+
. (12.17) 

 
Note that although the even denominator 2 originates from a tidal lock while the odd 
denominators originate from roots of unity, we have kept all the denominators together to be able 
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to later examine these different origins from the viewpoint of spins and orbital angular momenta.  
We may also return to (6.2) and write the Euler angle which drives the unity roots as: 
 

2 2
n n n

m j l s
ϑ π π π π= = = =

+
ℚ  (12.18) 

 
where the rational number ( )/ 2 / 2n j n l s= = +ℚ .  Then, we find that (12.7) and (12.12), when 

fully generalized, become 
 

( ) { }0mod 1 1
2 : 1 ^ , / 2, ,

2 2 2z z

n m m m
m l s l s j

m

− ⋅ ⊗ ↑ ↓ ⇔ ⊗ ⇔ = + = + = + 
 

. (12.19) 

 
So, for example, for m=3 the unity root exponent 1 1

0 3 3mod 3 / 3 ,0,n = − +  as seen in (12.7) while 

for m=5 the unity root exponent 2 1 1 2
0 5 5 5 5mod 5 / 5 , ,0, ,n = − − + +  as in (12.12).  Further, while we 

have developed the above in the domain π ϑ π− ≤ ≤ + , the fact that we may only have odd root-
of-unity denominators means that we may never have ϑ π= ± , because this Euler angle exists 
for any and all even-denominator roots of unity, but for none of the odd-denominator roots.  
Every root of unity includes 0ϑ = , but only the even roots include ϑ π= ± .  Therefore, the 
physically-permitted domain is really π ϑ π− < < + , where we have removed the equality ≤→<  
from the domain definition to likewise represent the unphysical character of the even-root 
denominators.  

 
Consequently, now we have a possible answer to the question raised at the outset, “of 

what it really means – physically, not mathematically – to subject a spinor ξ   – and by 

implication a wavefunction ψ   –  to a root of unity transformation 3ξ ξ τ ξ′→ =  about the z 

axis.”  When we start with an electron for which m=1, which designates the first root of unity 
which is equal to 1 alone, then if these connections are physically valid (and that is the subject of 
the next section), (12.16) tells us that l=0.  Now, if we subject that starter electron to a “root of 
unity transformation” (12.9) using a particular odd integer 3,5,7,9...m = , (12.15) and (12.16) 
then tell us that this electron has a total angular momentum Casimir number 

( )1 / 2 1,2,3,4...l m= − =  respectively.  So each time we increase m by 2 (and because m must be 

odd we must always use increments of 2), we will increase l by 1.   So what is the physical 
interpretation of transforming a spinor / electron using the root of unity generators (6.12)? 

 
A possible answer is that applying a root of unity transformation is synonymous with 

transforming that electron into a different state of orbital angular momentum.  So when we add 
an electron to an atomic shell, and we need to satisfy the Exclusion Principle, and when in order 
to do so we need to add some orbital angular momentum, the mathematical operation we use is a 
root of unity transformation.   When we remove an electron from an atom and change its orbital, 
the mathematical operation we perform is root of unity transformation.  This possible connection 
between roots of unity and the orbital quantum number certainly appears to work based on its 
isomorphic mapping to degrees of freedom and the available quantum states.  The question to 
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which we now turn is how all of this might be understood and assimilated in relation to pure 
theoretical and empirical physics. 
 
13. How Root of Unity Transformations Generate Orbital Angular 

Momentum Changes 
 
 If the fractional Dirac charges 2 /eg n m=  found in (11.17) to be restricted to 

1,2,3,5,7,9...m =  by Lorentz symmetry and by a tidal lock analysis are in reality being 
empirically observed in the FQHE even though this has not yet been understood or recognized, 
then because the FQHE is a phenomenon only observed at ultra-low temperatures, this empirical 
knowledge would require us to regard (11.7) not as a general electrodynamic phenomenon, but 
rather as a phenomenon of low-temperature electrodynamics.  This would mean that the 
appearance of a symmetry between electric and magnetic charges under e g↔  interchange in 
2 /eg n m=  is a low-temperature symmetry of electrodynamics which apparently is not 
observed, and is likely broken in some fashion, at “ordinary” temperatures sufficiently removed 
from 0K.  Consequently, the question would arise as to how (11.7) migrates from ultra-low 
temperatures, through ordinary temperatures which are neither ultra-low nor ultra-high, up to 
ultra-high temperatures GUT associated with what many regard as the conditions in the very 
early universe.  Our present understanding of high temperature monopole physics is laid out in 
the original works by ‘t Hooft and Polyakov [10], [11] as well as by Weinberg’s clear 
summarization at 442-443) of [12].  Answering this question as to the migration from 0K all the 
way up to GUT temperatures would require a direct consideration of the relationship between 
electrodynamics and thermodynamics, possibly requiring their unification, which is a question 
we simply point out, but shall not attempt to resolve, in the present paper. 
 
 The FQHE is observed in conductive materials which are cooled to ultra-low 
temperatures and then subjected to large perpendicular magnetic fields.  These conductive host 
materials which exhibit the FQHE are composed of atoms which contain electrons and protons 
and neutrons, and the fact that we cool these host materials down to ultra-low temperatures does 
not alter the fact these materials contain electrons and protons and neutrons.  In particular, the 
electrons in these materials are subject to the Exclusion Principle because they are fermions, and 
this does not change by virtue of cooling the host materials down to low temperatures.  In fact, 
one of the striking features of low-temperature physics which has been amply confirmed is that 
although low temperatures might a priori be thought to remove all energies from a system, the 
need to maintain Exclusion even at low temperatures means that electrons will maintain certain 
energies simply because they need to be in elevated energy states to satisfy exclusion.   
 

Thus, an electron state , ,z zn l s  which has a particular set of principal, orbital and spin 

quantum numbers where are greater than the ground state 1
2: 1, 0,z zs n l s= = = ±  of an s-shell 

electron will maintain its elevated quantum numbers even near 0K.  How do we know this?  We 
know this by the very fact that the host material still retains its material identity even when it is 
cooled to near 0K.  If cooling to near 0K allowed all the electrons in the material to drop down to 
the lowest energy 1

2: 1, 0,z zs n l s= = = ±  states, then the host material would disintegrate into 

Hydrogen or Helium, because these are the only elements for which all electrons can be 
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maintained in an s shell.  For any host material from Lithium all the way up the Periodic Table, 
there must be some electrons in p, d, f, g… shells and these necessarily have elevated energies 
forced by exclusion even near 0K.  Because these FQHE host materials are not observed to turn 
into Hydrogen or Helium near 0K, we know that they contain some p, d, f, g… electrons, in 
addition to the s electrons which they house in their very inner shells.  Consequently, we may 
begin to study what happens to an electron in some , ,z zn l s  state, and particularly, to how outer 

shell “itinerant” electron behaviors might be observed, when the host material containing that 
electron is cooled to near 0K and a very strong perpendicular magnetic field is applied. 
 
 The electric charge strength e in 1

2eg n=  of the standard DQC (4.7) and by extension of 

the fractional 1
2 /eg n m=  of (11.7) is the same one which is related to the running fine structure 

coupling via 2 / 4e cα π= ℏ , which, at low probe energies / large impact distance, approaches the 
numeric value 2 / 4 1/137.036...e cα π= ≅ℏ  asymptotically, see, e.g., equation [1] in Dirac’s [1] 
and Witten’s [13], pages 27 and 28.  Indeed, Dirac’s original purpose for the derivation in [1] 
was to “give a theoretical value for e” and thus the number ~137.  However, the DQC left this 
number “from the theoretical standpoint, completely undetermined,” and to date, despite many 
efforts to explain this number, this still is an experimentally-derived number with no commonly-
accepted theoretical explanation.  Dirac perceived it “rather disappointing to find this reciprocity 
between electricity and magnetism, instead of a purely electronic quantum condition, such as 
[Dirac’s equation number [1]].”  This means that the charge strength e in (4.7) and (11.7) is the 
charge strength for an electron.  So – notwithstanding the presently-prevailing explanation using 
quasi-particles and collective excitations – if (11.7) were to be the underlying cause of the 
FQHE, this would suggest that at low temperatures near 0K, under the influence of a large 
applied perpendicular magnetic field, electrons in the conductive host material exhibit an electric 
/ magnetic duality including a magnetic monopole charge, and also exhibit charge quantization 
and fractionalization.  This would also suggest that when the temperature is raised above a 
certain critical temperature related to the host material, this duality symmetry becomes broken, 
the magnetic monopoles become hidden or transmuted into some other form (perhaps related to 
the rise in temperature), and the electric charge loses its fractional character and simply becomes 
quantized in accordance with what is observed at temperatures sufficiently above 0K. 
 
 If, however, the fractional denominator m were to be further related to the total angular 
momentum Casimir number according to 1

2j l s m= + =  as is suggested by (12.16), then because 

these electronic quantum numbers do not go away near 0K lest the host material disintegrate into 
Hydrogen or Helium which it does not, the charge fraction being exhibited would be a direct 
manifestation the total angular momentum, so that each charge fraction should then correlate to a 
set of definitive orbital and spin states which should be experimentally detectable under the right 
circumstances.  For example, an itinerant m=3 charge of / 3n  should exhibit azimuthal 
momentum characteristics of the 3

2j = , p-shell electrons.  And an itinerant m=5 or m=7 charge 

of / 5n  or / 7n  should exhibit azimuthal momentum characteristics of the 5
2j =  or 7

2j =  , d-

shell or f-shell electrons, and so on.  This in turn should provide a range of opportunities for 
experimental validation via spin state / fractional charge state correlations which will be 
proposed in detail in the section 15.  But at the moment, the question to be addressed is whether 
on theoretical and physical grounds, it makes sense for these fractional denominators m, which 
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originate from the mth roots of unity in (6.1), to be so directly connected with the total angular 
momentum as to be one and the same thing via ( )2 2m j l s= = +  as found in (12.16).    

 
 It should be clear that the identification of the quantum number 1

2s =  in ( )2m l s= +  

with the spin Casimir in ( ) 21 is s sξ ξ+ =  is fully, deductively supported, because this 

originated in the ↑  and ↓  spin states being transformed in (12.9), and these states are the 

eigenstates of  1
2zs = ± , that is, 1

2zs ↑ = + ↑  and 1
2zs ↓ = − ↓ .   So the answer to this 

question can be boiled down to the question whether the identification 0modzl n m=  in (12.13) 

can be sustained, because if it can, then this sets the lower and upper bounds on zl  in (12.15), and 

this then establishes ( )2m l s= +  in (12.16).  So taking m=3 for the cubed roots of unity as an 

example, does it make sense to associate { }0mod 3 1,0, 1n = − +  with zl  for 1l = ?  And for the 

fifth and seventh roots of unity, does it make sense to associate { }0mod 5 2, 1,0, 1, 2n = − − + +  

with zl  for 2l =  and to associate { }0mod 7 3, 2, 1,0, 1, 2, 3n = − − − + + + , and so on?   Specifically, 

is there something about a root of unity which is in some way suggestive of – or better yet, which 
leads directly to – making the general association 0modzl n m=  between odd roots of unity m 

which are mathematical, and the azimuthal quantum number zl  which is physical? 

 
 At the simplest level, there is certainly a numeric correspondence.  The total angular 
momentum of an electron, times 2, is always an odd number 2 1,3,5,7,9...j = , while the helicity 
considerations of Lorentz symmetry reviewed in section 11 forced the observable roots of unity 
to be the same odd number 1,3,5,7,9...m = .  And on top of this, setting aside the denominator 2, 
the fill factor for the FQHE is also an odd integer 1,3,5,7,9...ν = .  So at least numerically, we 
can set 2m j ν= =  and have these results all fit tightly together.  But sometimes an odd integer is 
just an odd integer, and one should not read anything more into it.  So let’s dig further.   
 

At the next level, the root of unity denominator 1,3,5,7,9...m =  is more than just a 
number.  Each root of unity provides a degree of freedom with exactly m multi-values, so when 
these m values are twice replicated for ↑  and↓  as is shown in section 12, the number of distinct 
exclusionary states for any given m will be 2 2,6,10,14,18...m = , and this maps perfectly to the 
number of electrons which can fit into an s, p, d, f, g… shell, which is fundamentally driven by 
the available zl l l− ≤ ≤ +  times two spin states, i.e., by z zl s⊗ , see (12.7), (12.12) and (12.19).  

And from (12.13) we have the direct correspondence 0modzl n m=  between the permitted zl  and 

the symmetric least residue 0modn m.  So now an odd integer becomes somewhat more than an 

odd integer.  Now we have two degrees of freedom, each degree of freedom permits the same 
number of exclusive states, the composition of these two degrees of freedom permits the same 
number of states, and all of the quantum numbers which provide this freedom are identical.  
 
 At the next level, let us talk about observables.  All of the development through section 
10 of this paper fundamentally established that fractional Dirac monopoles could exist without 
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observable singularities, which means that these fractional monopoles themselves with charge 
fractions 1,2,3,4,5...m =  could be observable.  Then in section 11 we showed how Lorentz 
symmetry and specifically helicity considerations physically excluded all of the even-numbered 
fractions, and thus placed tighter restrictions on what is observable.  So now, aside from the 
charge fraction 2 which arises from the tidal lock discussed in section 5, the observable fractions 
are the odd numbers 1,3,5,7,9...m = .  But if these odd fractions m are directly observable, and if 
they are also directly related to some Casimir number of angular momentum, then the angular 
momentum Casimir number to which they are directly related must itself also be a direct 
observable.  So, if we are to regard 2m j=  found in (12.16) to be a correct relationship, then it is 
necessary that j be a direct observable.  Of course, j is a direct observable, because the total 
angular momentum iJ=J  commutes with the Dirac Hamiltonian, [ ], 0H =J .  In fact, j is the 

only Casimir number of angular momentum to which the fraction m could be related if it is to be 
a direct observable, because neither iL=L   nor iS=S  is separately observable.  The orbital 

= ×L r p , when commuted with the Dirac Hamiltonian, yields [ ] ( ),H i= − ×L Pαααα , while the 

spin / helicity operator 1
2≡S ΣΣΣΣ  for which ( ) ( )diag ,= σ σσ σσ σσ σΣΣΣΣ  commutes as [ ] ( ), 2H i= + ×S Pαααα .  

Only when we form the total angular momentum 1
2= +J L L SΣ = +Σ = +Σ = +Σ = + , do we obtain 

[ ] [ ], , 0H H= + =J L S  and thus find that the Casimir j in ( )2 1j jψ ψ= +J  is the direct 

observable and that ( )2 2m j l s= = +  found in (12.16) does indeed directly relate an observable 

to and observable.  Had we found a relationship such as m l=  alone (i.e., had we found in 
section 11 all charge fractions were permitted), then we would have found an observable m 
directly related to a non-observable l, which would have to be forbidden as unphysical.  So from 
this vantage point, it was the finding in section11 that only odd-integer charges may be observed 
(aside from the tidal locked m=2) which lead to a physically admissible alignment of m with j 
which is the only observable angular momentum Casimir number. 
 
 At the final and perhaps deepest level, we turn to the heart of quantum theory itself.  
Since the earliest days of quantum theory, scientists have sought to explain the existence of 
quantization by imposing boundary conditions upon waves.  For example, the so-called “particle 
in a box” problems envision that two ends of a vibrating string are affixed to two walls on the 
sides of a box, which of course then restricts the string to vibrating with a quantized number of 
nodes between its two ends.  Once de Broglie established wave particle duality, it became 
possible to improve and extend the original Bohr model of the atom and its treatment of angular 
momentum by regarding the electron – in wavelike incarnation – to be a closed circular string 
vibrating in an orbit with a circumference which is an integral multiple of the wavelength λ  of 
vibration, where the electron velocity v fλ=  and 1/f t=  is the frequency per time of this 
vibration measured, for example, in cycles per second.  Indeed, from this view, the requirement 
that (4.4) be single-valued, ( ) ( ) ( )0 2 0ψ ψ π ψ+ + +→ = , which led to the standard DQC at (4.8), 

the half-integer condition at (5.13), (5.14), and the fractional condition at (11.7), is simply an 
extension of the basic de Broglie approach of “fitting” both ends of a closed loop over 
0 2ϕ π≤ ≤  with continuity, so that 0ϕ =  and 2ϕ π=  effectively become the “boundaries” for 
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imposing a boundary condition that there be continuity, not only for the function ( )f ϕ  which 

specifies the periodic vibration, but also for its derivatives /f ϕ∂ ∂  and 2 2/f ϕ∂ ∂ .  
 
 What does this have to do with roots of unity and their possible relation 2m j=  to the 
total angular momentum?  The root of unity relationship (6.1) is the quintessential canonical 
pure mathematics foundation for specifying continuity as the boundary condition at the extrema 
of a 0 2ϑ π≤ ≤  closed loop domain.  If we think of each root of unity as representing one 
periodic cycle, then for any mth root of unity, the trivial root 1 will always be spotted at 0ϕ =  
and will make its first recycled reappearance at 2ϕ π= .  In between, there will be m-1 roots all 
spotted at equally-spaced orientations along the unit circle over the 0 2ϑ π≤ ≤  domain, at the 
angles 2 / 2n mϑ π π= = ℚ  of (6.2).  If we then imagine that one might “vibrate” this unit circle 
so that the first node for each cycle is spotted at one of the unity roots, then what we have 
effectively done is fitted a closed de Broglie wave into the complex plane and relied upon the 
pure mathematics of roots of unity to do so by using these roots to spot the start of each cycle in 
the vibration.  In short, roots of unity split up the unit circle with continuity over 0 2ϑ π≤ ≤ , just 
like closed stationary de Broglie waves split up a 0 2iθ π≤ ≤  domain in physical space with 

continuity at each end of the domain.   
 

But of course, the roots of unity exit in a complex plane.  So to talk about real, physical 
angular momentum in the real physical space of SO(3) we need to then map the root of unity 
points out of the complex plane onto SO(3) and determine the behaviors of azimuthal 
transformations on SO(3).  This mapping onto SO(3) was earlier obtained in (8.15) to (8.17), 
with (8.17) showing the azimuthal transformation.  As we can see, the root of unity angle 

2 /n mϑ π=  has the exact same effect as a rotation through ϕ ϑ=  about the z axis, 
supplemented by the Euclidean space and time transformation (9.18) emanating from the factor 

( ) ( )det exp 3i iτ ϑ ϑ= , see (6.19), for which the operator matrix is (9.3).  So there will always be 

a rotation ϕ ϑ=  about the z axis, and further, depending upon the selected 2 /n mϑ π=  in the 

unitary root of unity generator 3τ , there may also be a dilation or constriction of the space and 

time axes owing to the transformation (9.18). 
 
 To explore this further, let us start with m=3, because in this special case, as already 
discussed toward the end of section 9 and also at (12.1), 2 / 3nϑ π=  and so 

( ) ( )exp 3 exp 2 1i i nϑ π= = .  Thus, for m=3, there is no transformation occurring between space 

and time, and (8.17) becomes: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

cos 2 / 3 sin 2 / 3 0 cos 120 sin 120 0

sin 2 / 3 cos 2 / 3 0 sin 120 cos 120 0

0 0 1 0 0 1

x n n x n n x

y n n y n n y

z z z

π π
π π

′    ⋅ ° ⋅ °     
        ′ = − = − ⋅ ° ⋅ °        

        ′        

, (13.1) 

 

For the primitive roots 1,2n = , ( )cos 2 / 3 1/ 2nπ = − , and ( )sin 2 / 3 3 / 2nπ = ± , and for the 

trivial 0,3,6,9...n =  this becomes a 3x3 unit matrix and there is no rotation at all, k k kx x x′→ = , 
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but we do not need to use these explicit values here. Rather let’s consider the set of all possible 
closed de Broglie waves, which by definition must have some integer number 1, 2, 3, 4, 5, 6, 7… 
of cycles per 0 2ϕ π≤ ≤  to maintain a continuous closed loop.  And let’s pose the question: what 
is the subset of such closed waves which will remain invariant under the transformation (13.1)?  
The answer is evident from the above: any closed wave which completes m=3 full oscillations 
over 0 2ϕ π≤ ≤ , i.e., any closed wave with m=3 cycles as its fundamental (first) harmonic will 
be invariant under (13.1), because a three-cycle closed wave rotated by some multiple of 120°  
will be indistinguishable from the original closed wave before its rotation.   
 
 We mention the harmonics, because a close wave with higher 3 k⋅ -cycle harmonics with 
integer 1,2,3,4...k =  will also be rotationally invariant under (13.1).  Thus, a 6 or 9 or 12… 
cycle closed wave will also exhibit symmetry under a 120°  azimuthal rotation.  However, by the 
analysis of section 11,  the even roots of unity 6,12,18...m =  are excluded by Lorentz symmetry, 
and this means that the de Broglie waves with these same numbers of cycles are also excluded.  
So in reality the permitted higher harmonics are 3 k⋅  with 1,3,5,7...k =  likewise restricted to 
being an odd integer.  Further, while for m=3 the permitted higher harmonics are 9,15,21,27... 
cycles over the domain 0 2ϕ π≤ ≤ , these same harmonics are also the fundamental harmonics of 
the roots of unity for which 9,15,21,27...m = .  And, of course, each of 9,15,21,27... is a non-
prime number, because each it is a multiple of 3.  So we may associate the Lorentz-invariant root 
of unity m=3 with the fundamental harmonic of an 3-cycle closed de Broglie wave fitted to 
0 2ϕ π≤ ≤ , and the higher, odd-multiple harmonics may be associated with the fundamental 
harmonic of a higher odd root which, mathematically, is a non-prime number. 
 
 To provide a second example for contrast before we generalize, now let look at m=5.  
Here 2 / 5nϑ π=  and (8.17) becomes: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

cos 2 / 5 sin 2 / 5 0
6

exp sin 2 / 5 cos 2 / 5 0
5

0 0 1

cos 72 sin 72 0
6

exp sin 72 cos 72 0
5

0 0 1

x n n x
n

y i n n y

z z

n n x
n

i n n y

z

π π
π π π

π

′     
     ′ = −          ′    

 ⋅ ° ⋅ °  
    = − ⋅ ° ⋅ °       

  

. (13.2) 

 
The factor ( ) ( ) ( )exp 6 / 5 cos 6 / 5 sin 6 / 5i n n i nπ π π= +  now does give rise to a Euclidean space 

and time transformation.  The best way to approach this is using (9.18) with explicit sin and cos 
values.  For m=5 and also setting ix=x  and it=t , the space and time transformation (9.18) is: 

 

( ) ( )
( ) ( )

cos 6 / 5 sin 6 / 5

sin 6 / 5 cos 6 / 5

j j j

j j j

n nt t t

n nx x x

π π
π π

    ′   
→ =       −′      

. (13.3) 
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For the first cycle of angles 6 / 5nπ  with primitive roots 1,2,3,4n = , all of the sin and cos 
functions reduce to those of either ±  the sin and cos of / 5 36π = °  or of 2 / 5 72π = ° .  These are 

( ) 1
4sin 36 10 2 5 .5878° = − = , ( ) ( )1

4cos 36 1 5 .8090° = + = , ( ) 1
4sin 72 10 2 5 .9511° = + =  

and ( ) ( )1
4cos 72 1 5 .3090° = − + = , to four digits.  These root expressions may be obtained by 

solving the polynomial 
1

0
0

m i

i
x

−

=
=∑  of (6.14) for m=5, or geometrically manipulating the angles 

on a regular pentagon, or they may be looked up.  And of course the numeric values of sin and 
cos may be obtained from any table or any calculator.  For the trivial root at n=5 we simply have 

( )cos 6 1nπ =  and ( )sin 6 0nπ =  thus k k kχ χ χ′→ =  as was the case for all the roots in (13.1). 

 
 Using these explicit values of sin and cos, for { }1,4n = , which using 0mod 5n  is the set 

{ }1n = ±  which we are seeking to connect to the angular momentum 1zl = ± , and obtaining the 

correct sign for sin and cos by subtracting off full cycles through 2π  then rotating the remainder 
angle into the upper-right 0 90ϑ≤ ≤ °  quadrant, (13.2) becomes, for 1n = ±  respectively: 
 

( ) ( )
( ) ( )

( )
( )

1 5 10 2 5cos / 5 sin / 5 1
sin / 5 cos / 5 4 10 2 5 1 5

.8090 .5878 .8090 .5878

.5878 .8090 .8090 .5878

j j j j

j j j j

j j j

j j j

t t t t

x x x x

t t x

x x t

π π
π π

 − + − −   ′      → = =         ± −′          − − +
 

−    − 
= =    ± − − ±    

∓∓

∓

∓ ∓

. (13.4) 

 
For { }2,3n =  which via 0mod 5n  is the set { }2n = ±  that we seek to connect to 2zl = ± , using 

the same procedure, (13.2) becomes, for 2n = ±  respectively: 
 

( ) ( )
( ) ( )

( )
( )

1 5 10 2 5cos 2 / 5 sin 2 / 5 1
sin 2 / 5 cos 2 / 5 4 10 2 5 1 5

.3090 .9511 .3090 .9511

.9511 .3090 .3090 .9511

j j j j

j j j j

j j j

j j j

t t t t

x x x x

t t x

x x t

π π
π π

 − + ± + ±   ′      → = =         ′          + − +
 

±    ± 
= =    
    

∓
∓

∓ ∓

.(13.5) 

 
To make the nature of this discrete (quantized) Euclidean space and time transformation 

for the fifth root m=5 very clear, from (13.4) for 1n = ±  we may extract: 
 

.8090 .5878

.8090 .5878

j j j

j j j

t t x

x x t

′ = − ±
′ = − ∓

 (13.6) 

 
while from (13.5) for 2n = ±  we extract: 
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.3090 .9511

.3090 .9511

j j j

j j j

t t x

x x t

′ = ±
′ = ∓

. (13.7) 

 
We see how these look like Lorentz transformations, but as seen in section 9, these are Euclidean 
rotations between space and time which preserve the invariance of the Minkowski interval 

2 2t r−  in flat spacetime and are generally characterized by the extended metric equation 
2ds g dx dx g d dµ ν

µν χ χΜ Ν
ΜΝ= =  of (9.16) which preserves 2 2 2ds dt dr= −  on any geodesic 

tangent space with g ηΜΝ ΜΝ→  and gµν µνη→ . 

 
 As with (13.1), any closed stationary de Broglie wave with m=5 cycles over 0 2ϕ π≤ ≤  
and higher 5 k⋅  harmonics will remain rotationally-invariant under (13.2).  To preserve Lorentz 
symmetry k must be an odd integer, and of course these waves will simply be the fundamental 
harmonic of the non-prime root of unity 5m k= ⋅ , which will necessarily include non-primitive 
roots beyond the number 1 itself.  Therefore, any closed wave closed wave with m=5 cycles as 
its fundamental (first) harmonic will be rotationally invariant under (13.2), because the three-
cycle closed wave rotated by some multiple of 72°  will be rotationally indistinguishable from 
the original wave before the transformation rotation.  However, the time and space coordinates 
ascribed to this closed wave will not be invariant under (13.2), but rather will transformed 
according to (13.3) which leads to the specific, discrete Euclidean space and time mixing of 
(13.4) to (13.7).  This means two things:  First, of the closed de Broglie wave has a radius 

2 2 2r x y z= + +  before the transformation (13.2) is applied, it will have a different radius 
2 2 2r x y z′ ′ ′ ′= + +  following transformation.  Second, if the time 1/t f=  associated with the 

vibrational frequency is 2 2 2
x y zt t t t= + +  before transformation, then following transformation 

it will become 2 2 2
x y zt t t t′ ′ ′ ′= + + .  Because each of ( ), ,

Tjx x y z=  and ( ), ,
Tj

x y zt t t t=  

transforms in an identical manner under (13.3) for the fifth roots of unity m=5, this means (13.6) 
for 1n = ±  and (13.7) for 2n = ±  respectively, may be written directly in terms of r and t as: 
 

.8090 .5878

.8090 .5878

t t r

r r t

′ = − ±
′ = − ∓

 (13.8) 

 
and: 
 

.3090 .9511

.3090 .9511

t t r

r r t

′ = ±
′ = ∓

. (13.9) 

 
 Now, restoring natural constants ℏ  and c, let us the Bohr radius 0 e/a m cα= ℏ  as a 

reference length against which to specify the radius r of the closed de Broglie wave where em  is 

the electron rest mass and 2 / 4e cα π= ℏ  is the running electromagnetic coupling which 
approaches 1/137.036... at low probe energies.  Let us then posit that the closed de Broglie wave 
with m=5 cycles over 0 2ϕ π≤ ≤ , prior to the transformation (13.2), has a radius 



Jay R. Yablon 
JULY 9, 2015 DRAFT 

64 
 

0 e/r a m cρ ρ α= = ℏ  where ρ  is some dimensionless factor for which the Bohr radius used as a 

reference length.  That is, r is ρ  tme the Bohr radius.  The circumference of this closed wave is 

then 0 e2 2 2 /C r a m cπ ρ π ρ π α= = = ℏ , keeping in mind also that 2h π= ℏ .  Because there are 

m=5 cycles fitted into the circumference, the wavelength of this de Broglie wave will be:  
 

0 e e/ 5/ 5 2 / 5 2 2 / 5 / 5C r a m c h m cλ π ρ π ρ π α ρ α= = = = =ℏ . (13.10) 

 
The momentum using de Broglie’s wave-particle duality formula is then /p h λ= , so that at the 

radial distance 0 e/r a m cρ ρ α= = ℏ , the angular momentum pr  will be: 

 

e

e

5
5 5

2 2

mhr h
p

c

m c
r h

αρ
α ρλ π π

= = = =ℏ
ℏ

ℏ
. (13.11) 

 

2
21

2

/ / 2

2

p h p h

p mv

p
E mv

m

λ λ= → =
=

= =

 

 
 
 

This leads to several conclusions.  First, the angular momentum of a de Broglie wave 
with a fixed number of cycles per 0 2ϕ π≤ ≤  is invariant with respect to the radius r.   If the 
radius is increased by a factor 1ρ > , we wavelength will diminish by the same factor, for a net 
cancellation as seen in (13.11).  Second, the root of unity which in this case is m=5 is in fact 
synonymous with the angular momentum of this de Broglie wave, because 1=ℏ  is the 
elementary, quantized unit of angular momentum in natural units.  Likewise, it is clear that for 
any of the other odd roots of unity 1,3,5,7...m =  permitted under Lorentz symmetry as reviewed 
in section 11, the result will be exactly the same, that is, in general, for a de Broglie wave which 
is rotationally-invariant under the roots of unity transformation (8.17) with 2 /n mϑ π=  for a 
given m, the angular momentum of that de Broglie wave, in natural units 1=ℏ , will be: 

 
1,3,5,7...p mr = = . (13.12) 

 
Therefore it does indeed make sense to associate roots of unity with angular momentum via 

/ 2j m=  as was found in (12.16), and if we combine (12.16) with (13.2) we find that: 
 

1

2 2 2

1 3 5 7
, , , ...

2 2 2 2

m pr
j l l s= + == + = = . (13.13) 

 
 The above associates the total angular momentum Casimir number j with / 2pr  of the de 
Broglie wave, including the factor ½ which is required to match up these two results.  This factor 
is a direct indication of the fact that fermions, e.g., electrons, are observed with spins which have 
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half a unit of ℏ , but that orbital angular momenta come in whole units of ℏ .  This is most readily 
seen if we rewrite (13.13) as 
 

2 1 2 2 2pr l l s j= + = + = . (13.14) 
 
With l=0, this becomes 1 2pr s= = .  Were we to have set 1,3,5,7...p m j lr s= = = + =  without 
the factor of ½, then for l=0 we would have 1s= , which is not empirically correct, and for non-
zero l we would have had 3,5,7...j =   which is also not empirically correct.  The relationship 
(13.13) achieves three correct results:  First, the smallest permitted total angular momentum is 
1
2 ℏ .  Second, other permitted angular momenta add whole units of lℏ  to this half unit of angular 

momentum.  Third, the factor of 2 compensates for that fact that 1,3,5,7...m =  must be an odd 
integer to maintain Lorentz symmetry, and this ensures that the angular momentum increments 
above 1

2 ℏ  come in units of ℏ , rather than units of 2ℏ .  In short, (13.13) comports closed de 

Broglie waves to angular momenta actually observed empirically.   
 

Thus, in answer to the question earlier posed, we have shown that it does make sense on 
theoretical and physical grounds to directly connect the fractional denominators m, which 
originate from the mth roots of unity in (6.1), with the total angular momentum via 

( )2 2m j l s= = +  found in (12.16).  And so, we conclude that applying a root of unity 

transformation is indeed synonymous with transforming that electron into a different state of 
orbital angular momentum.  Now the root of unity transformation (6.12) is not just some abstract 
mathematical operation; it is the symmetry operation which alters the orbital angular momentum 
of electrons.  
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